|
import os |
|
import pandas as pd |
|
import pickle |
|
import numpy as np |
|
from torch.utils.data import Dataset |
|
|
|
CLASSES = ["Bag", "Bed", "Bowl","Clock", "Dishwasher", "Display", "Door", "Earphone", "Faucet", |
|
"Hat", "StorageFurniture", "Keyboard", "Knife", "Laptop", "Microwave", "Mug", |
|
"Refrigerator", "Chair", "Scissors", "Table", "TrashCan", "Vase", "Bottle"] |
|
|
|
AFFORD_CL = ['lay','sit','support','grasp','lift','contain','open','wrap_grasp','pour', |
|
'move','display','push','pull','listen','wear','press','cut','stab'] |
|
|
|
def pc_normalize(pc): |
|
centroid = np.mean(pc, axis=0) |
|
pc = pc - centroid |
|
m = np.max(np.sqrt(np.sum(pc**2, axis=1))) |
|
pc = pc / m |
|
return pc, centroid, m |
|
|
|
class Corrupt(Dataset): |
|
|
|
def __init__(self, |
|
corrupt_type='scale', |
|
level=0 |
|
): |
|
|
|
|
|
data_root='LASO-C' |
|
|
|
file_name = f'{corrupt_type}_{level}.pkl' |
|
|
|
self.corrupt_type = corrupt_type |
|
self.level = level |
|
|
|
self.cls2idx = {cls.lower():np.array(i).astype(np.int64) for i, cls in enumerate(CLASSES)} |
|
self.aff2idx = {cls:np.array(i).astype(np.int64) for i, cls in enumerate(AFFORD_CL)} |
|
|
|
with open(os.path.join(data_root, 'point', file_name), 'rb') as f: |
|
self.anno = pickle.load(f) |
|
|
|
self.question_df = pd.read_csv(os.path.join(data_root, 'text', 'Affordance-Question.csv')) |
|
|
|
def find_rephrase(self, df, object_name, affordance): |
|
|
|
qid = 'Question0' |
|
result = df.loc[(df['Object'] == object_name) & (df['Affordance'] == affordance), [qid]] |
|
if not result.empty: |
|
return result.iloc[0][qid] |
|
else: |
|
raise NotImplementedError |
|
|
|
def __getitem__(self, index): |
|
|
|
data = self.anno[index] |
|
cls = data['class'] |
|
affordance = data['affordance'] |
|
gt_mask = data['mask'] |
|
point_set = data['point'] |
|
point_set,_,_ = pc_normalize(point_set) |
|
|
|
question = self.find_rephrase(self.question_df, cls, affordance) |
|
|
|
affordance = self.aff2idx[affordance] |
|
|
|
point_input = point_set.transpose() |
|
|
|
return point_input, self.cls2idx[cls], gt_mask, question, affordance |
|
|
|
def __len__(self): |
|
|
|
return len(self.anno) |
|
|