Datasets:
annotations_creators:
- found
language_creators:
- found
language:
- ro
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
paperswithcode_id: null
pretty_name: RoSent
dataset_info:
features:
- name: original_id
dtype: string
- name: id
dtype: string
- name: sentence
dtype: string
- name: label
dtype:
class_label:
names:
'0': negative
'1': positive
splits:
- name: test
num_bytes: 6837430
num_examples: 11005
- name: train
num_bytes: 8367687
num_examples: 17941
download_size: 14700057
dataset_size: 15205117
Dataset Card for RoSent
Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: GitHub
- Repository: GitHub
- Paper: arXiv preprint
- Leaderboard:
- Point of Contact:
Dataset Summary
This dataset is a Romanian Sentiment Analysis dataset. It is present in a processed form, as used by the authors of Romanian Transformers
in their examples and based on the original data present in at this GitHub repository. The original data contains product and movie reviews in Romanian.
Supported Tasks and Leaderboards
[More Information Needed]
Languages
This dataset is present in Romanian language.
Dataset Structure
Data Instances
An instance from the train
split:
{'id': '0', 'label': 1, 'original_id': '0', 'sentence': 'acest document mi-a deschis cu adevarat ochii la ceea ce oamenii din afara statelor unite s-au gandit la atacurile din 11 septembrie. acest film a fost construit in mod expert si prezinta acest dezastru ca fiind mai mult decat un atac asupra pamantului american. urmarile acestui dezastru sunt previzionate din multe tari si perspective diferite. cred ca acest film ar trebui sa fie mai bine distribuit pentru acest punct. de asemenea, el ajuta in procesul de vindecare sa vada in cele din urma altceva decat stirile despre atacurile teroriste. si unele dintre piese sunt de fapt amuzante, dar nu abuziv asa. acest film a fost extrem de recomandat pentru mine, si am trecut pe acelasi sentiment.'}
Data Fields
original_id
: astring
feature containing the original id from the file.id
: astring
feature .sentence
: astring
feature.label
: a classification label, with possible values includingnegative
(0),positive
(1).
Data Splits
This dataset has two splits: train
with 17941 examples, and test
with 11005 examples.
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
The source dataset is present at the this GitHub repository and is based on product and movie reviews. The original source is unknown.
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
Stefan Daniel Dumitrescu, Andrei-Marious Avram, Sampo Pyysalo, @katakonst
Licensing Information
[More Information Needed]
Citation Information
@article{dumitrescu2020birth,
title={The birth of Romanian BERT},
author={Dumitrescu, Stefan Daniel and Avram, Andrei-Marius and Pyysalo, Sampo},
journal={arXiv preprint arXiv:2009.08712},
year={2020}
}
Contributions
Thanks to @gchhablani and @iliemihai for adding this dataset.