donfu
commited on
Commit
·
43219d4
1
Parent(s):
007df59
Deal with huge files, cleanup, mrege
Browse files- merge_parquets.py +76 -0
- process.py +68 -127
merge_parquets.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Callable, Iterable, TypeVar
|
5 |
+
|
6 |
+
import pyarrow as pa
|
7 |
+
import pyarrow.parquet as pq
|
8 |
+
|
9 |
+
|
10 |
+
def stream_to_parquet(path: Path, tables: Iterable[pa.Table]) -> None:
|
11 |
+
try:
|
12 |
+
first = next(tables)
|
13 |
+
except StopIteration:
|
14 |
+
return
|
15 |
+
schema = first.schema
|
16 |
+
with pq.ParquetWriter(path, schema) as writer:
|
17 |
+
writer.write_table(first)
|
18 |
+
for table in tables:
|
19 |
+
table = table.cast(schema) # enforce schema
|
20 |
+
writer.write_table(table)
|
21 |
+
|
22 |
+
|
23 |
+
def stream_from_parquet(path: Path) -> Iterable[pa.Table]:
|
24 |
+
reader = pq.ParquetFile(path)
|
25 |
+
for batch in reader.iter_batches():
|
26 |
+
yield pa.Table.from_batches([batch])
|
27 |
+
|
28 |
+
|
29 |
+
def stream_from_parquets(paths: Iterable[Path]) -> Iterable[pa.Table]:
|
30 |
+
for path in paths:
|
31 |
+
yield from stream_from_parquet(path)
|
32 |
+
|
33 |
+
|
34 |
+
T = TypeVar("T")
|
35 |
+
|
36 |
+
|
37 |
+
def coalesce(
|
38 |
+
items: Iterable[T], max_size: int, sizer: Callable[[T], int] = len
|
39 |
+
) -> Iterable[list[T]]:
|
40 |
+
"""Coalesce items into chunks. Tries to maximize chunk size and not exceed max_size.
|
41 |
+
If an item is larger than max_size, we will always exceed max_size, so make a
|
42 |
+
best effort and place it in its own chunk.
|
43 |
+
You can supply a custom sizer function to determine the size of an item.
|
44 |
+
Default is len.
|
45 |
+
>>> list(coalesce([1, 2, 11, 4, 4, 1, 2], 10, lambda x: x))
|
46 |
+
[[1, 2], [11], [4, 4, 1], [2]]
|
47 |
+
"""
|
48 |
+
batch = []
|
49 |
+
current_size = 0
|
50 |
+
for item in items:
|
51 |
+
this_size = sizer(item)
|
52 |
+
if current_size + this_size > max_size:
|
53 |
+
yield batch
|
54 |
+
batch = []
|
55 |
+
current_size = 0
|
56 |
+
batch.append(item)
|
57 |
+
current_size += this_size
|
58 |
+
if batch:
|
59 |
+
yield batch
|
60 |
+
|
61 |
+
|
62 |
+
def coalesce_parquets(
|
63 |
+
paths: Iterable[Path], outpath: Path, max_size: int = 2**20
|
64 |
+
) -> None:
|
65 |
+
tables = stream_from_parquets(paths)
|
66 |
+
# Instead of coalescing using number of rows as your metric, you could
|
67 |
+
# use pa.Table.nbytes or something.
|
68 |
+
# table_groups = coalesce(tables, max_size, sizer=lambda t: t.nbytes)
|
69 |
+
table_groups = coalesce(tables, max_size)
|
70 |
+
coalesced_tables = (pa.concat_tables(group) for group in table_groups)
|
71 |
+
stream_to_parquet(outpath, coalesced_tables)
|
72 |
+
|
73 |
+
|
74 |
+
def merge_parquet_dir(path: str, outpath: Path) -> None:
|
75 |
+
paths = Path(path).glob("*.parquet")
|
76 |
+
coalesce_parquets(paths, outpath)
|
process.py
CHANGED
@@ -2,12 +2,9 @@
|
|
2 |
# Simple script to convert StackExchange XML to Open Assistant format
|
3 |
# Original code by https://github.com/b-mc2
|
4 |
|
|
|
5 |
from bs4 import BeautifulSoup as bs
|
6 |
import pandas as pd
|
7 |
-
import os
|
8 |
-
import glob
|
9 |
-
import sys
|
10 |
-
import re
|
11 |
from html2text import html2text
|
12 |
from datasets import load_dataset
|
13 |
from lxml import etree
|
@@ -23,12 +20,11 @@ QUESTION_SCORE_TRESHOLD = 0
|
|
23 |
ANSWER_SCORE_TRESHOLD = 0
|
24 |
HF_DATASET = "donfu/oa-stackexchange"
|
25 |
PARQUET_FILE = "{0}.parquet"
|
|
|
26 |
|
27 |
|
28 |
def main():
|
29 |
datasets = sys.argv[1:] if len(sys.argv) > 1 else list_cached_datasets()
|
30 |
-
if "temp" in datasets:
|
31 |
-
process_temp_datasets()
|
32 |
for dataset in datasets:
|
33 |
process_dataset(dataset)
|
34 |
|
@@ -44,28 +40,63 @@ def process_dataset(dataset):
|
|
44 |
xml_file = f"{XML_DIR}/{dataset}.xml"
|
45 |
parquet_file = PARQUET_FILE.format(dataset)
|
46 |
source = SOURCE.format(dataset)
|
47 |
-
if
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
51 |
# upload_hf(dataset)
|
52 |
else:
|
53 |
-
print(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
|
|
55 |
|
56 |
-
def process_temp_datasets():
|
57 |
-
parquet_files = glob.glob(f"temp/?.parquet")
|
58 |
-
for file in parquet_files:
|
59 |
-
print("Reading parquet file: ", file)
|
60 |
-
df = pd.read_parquet(file)
|
61 |
-
print("Converting to Open Assistant format...")
|
62 |
-
oa = convert_to_oa(df, SOURCE.format("stackoverflow"))
|
63 |
-
num = re.search(r"\d", file)[0]
|
64 |
-
parquet_file = f"so/stackoverflow-{num}.parquet"
|
65 |
-
df.to_parquet(parquet_file, row_group_size=100, engine="pyarrow", index=False)
|
66 |
-
print("Wrote parquet file: ", parquet_file)
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
|
71 |
def convert_to_oa(all, source):
|
@@ -74,26 +105,16 @@ def convert_to_oa(all, source):
|
|
74 |
|
75 |
Only include questions with an AcceptedAnswerId
|
76 |
"""
|
77 |
-
convert_tags = (
|
78 |
-
lambda raw: raw.replace("-", " ")
|
79 |
-
.replace("><", ", ")
|
80 |
-
.replace("<", "")
|
81 |
-
.replace(">", "")
|
82 |
-
)
|
83 |
-
create_metadata = lambda row: {
|
84 |
-
"tags": convert_tags(row["Tags_q"]),
|
85 |
-
"question_score": row["Score_q"],
|
86 |
-
"answer_score": row["Score_a"],
|
87 |
-
}
|
88 |
questions = all[all["AcceptedAnswerId"] != 0]
|
89 |
merged = pd.merge(
|
90 |
questions,
|
91 |
all,
|
92 |
-
how="
|
93 |
left_on="AcceptedAnswerId",
|
94 |
right_on="Id",
|
95 |
suffixes=("_q", "_a"),
|
96 |
)
|
|
|
97 |
del all
|
98 |
|
99 |
merged["INSTRUCTION"] = (
|
@@ -106,6 +127,18 @@ def convert_to_oa(all, source):
|
|
106 |
return merged[["INSTRUCTION", "RESPONSE", "SOURCE", "METADATA"]]
|
107 |
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
def save_parquet(df, dataset):
|
110 |
"""
|
111 |
Save Dataframe to Parquet. See here for specs:
|
@@ -126,98 +159,6 @@ def upload_hf(dataset):
|
|
126 |
print("Uploaded to Hugging Face: " + HF_DATASET)
|
127 |
|
128 |
|
129 |
-
# Define a custom SAX ContentHandler to extract data from the XML file
|
130 |
-
class StackExchangeHandler:
|
131 |
-
def __init__(self, total_rows):
|
132 |
-
self.total_rows = total_rows
|
133 |
-
self.progress_bar = tqdm(total=self.total_rows)
|
134 |
-
self.df = pd.DataFrame(
|
135 |
-
columns=[
|
136 |
-
"Id",
|
137 |
-
"PostTypeId",
|
138 |
-
"Body",
|
139 |
-
"Title",
|
140 |
-
"Tags",
|
141 |
-
"Score",
|
142 |
-
"AcceptedAnswerId",
|
143 |
-
"ParentId",
|
144 |
-
]
|
145 |
-
)
|
146 |
-
|
147 |
-
def startElement(self, name, attrs):
|
148 |
-
if name == "row":
|
149 |
-
row = {}
|
150 |
-
row["Id"] = int(attrs.getValue("Id"))
|
151 |
-
row["PostTypeId"] = int(attrs.getValue("PostTypeId"))
|
152 |
-
row["Body"] = str(attrs.getValue("Body"))
|
153 |
-
row["Title"] = str(attrs.get("Title", ""))
|
154 |
-
row["Tags"] = str(attrs.get("Tags", ""))
|
155 |
-
row["Score"] = int(attrs.get("Score", 0))
|
156 |
-
row["ParentId"] = int(attrs.get("ParentId", 0))
|
157 |
-
row["AcceptedAnswerId"] = int(attrs.get("AcceptedAnswerId", 0))
|
158 |
-
|
159 |
-
self.df = pd.concat(
|
160 |
-
[self.df, pd.DataFrame([row], columns=self.df.columns)],
|
161 |
-
ignore_index=True,
|
162 |
-
)
|
163 |
-
self.progress_bar.update(1)
|
164 |
-
|
165 |
-
|
166 |
-
def parse_xml(path: str):
|
167 |
-
"""
|
168 |
-
Parse (very large) XML files with sax parser and load it into a pandas Dataframe
|
169 |
-
"""
|
170 |
-
total_rows = int(subprocess.getoutput(f"grep -c '<row' {path}"))
|
171 |
-
print(f"Parsing {total_rows} rows from {path}...")
|
172 |
-
columns = "Id PostTypeId Body Title Tags Score AcceptedAnswerId ParentId"
|
173 |
-
rows = []
|
174 |
-
if total_rows > 50000000:
|
175 |
-
huge_file = True
|
176 |
-
temp_file = 1
|
177 |
-
os.makedirs("temp", exist_ok=True)
|
178 |
-
|
179 |
-
context = etree.iterparse(path, events=("start", "end"))
|
180 |
-
|
181 |
-
for event, element in tqdm(
|
182 |
-
context, total=total_rows * 2
|
183 |
-
): # somehow it does not work just with start event, hence *2
|
184 |
-
if event == "start" and element.tag == "row":
|
185 |
-
row = [
|
186 |
-
int(element.get("Id")),
|
187 |
-
int(element.get("PostTypeId")),
|
188 |
-
element.get("Body"),
|
189 |
-
element.get("Title", ""),
|
190 |
-
element.get("Tags", ""),
|
191 |
-
int(element.get("Score", 0)),
|
192 |
-
int(element.get("AcceptedAnswerId", 0)),
|
193 |
-
int(element.get("ParentId", 0)),
|
194 |
-
]
|
195 |
-
rows.append(row)
|
196 |
-
if huge_file and len(rows) >= 10000000:
|
197 |
-
df = pd.DataFrame(rows, columns=columns.split())
|
198 |
-
df.to_parquet(
|
199 |
-
f"temp/{temp_file}.parquet", engine="pyarrow", index=False
|
200 |
-
)
|
201 |
-
print(f"Wrote temp/{temp_file}.parquet file")
|
202 |
-
rows = []
|
203 |
-
temp_file += 1
|
204 |
-
del df
|
205 |
-
element.clear()
|
206 |
-
element.getparent().remove(element)
|
207 |
-
|
208 |
-
df = pd.DataFrame(rows, columns=columns.split())
|
209 |
-
if huge_file:
|
210 |
-
df.to_parquet(f"temp/{temp_file}.parquet", engine="pyarrow", index=False)
|
211 |
-
del rows
|
212 |
-
del df
|
213 |
-
print("Merging all temp files...")
|
214 |
-
merge_parquet_dir("temp", "temp/merged.parquet")
|
215 |
-
df = pd.read_parquet("temp/merged.parquet")
|
216 |
-
print(f"Loaded full dataset with {len(df)} rows")
|
217 |
-
|
218 |
-
return df
|
219 |
-
|
220 |
-
|
221 |
remove_markdown_links_pattern = r"\[([^\]]+)\]\(([^\)]+)\)"
|
222 |
remove_remaining_links = r"https?:\/\/[^\s]+"
|
223 |
|
|
|
2 |
# Simple script to convert StackExchange XML to Open Assistant format
|
3 |
# Original code by https://github.com/b-mc2
|
4 |
|
5 |
+
import os, gc, glob, sys, re
|
6 |
from bs4 import BeautifulSoup as bs
|
7 |
import pandas as pd
|
|
|
|
|
|
|
|
|
8 |
from html2text import html2text
|
9 |
from datasets import load_dataset
|
10 |
from lxml import etree
|
|
|
20 |
ANSWER_SCORE_TRESHOLD = 0
|
21 |
HF_DATASET = "donfu/oa-stackexchange"
|
22 |
PARQUET_FILE = "{0}.parquet"
|
23 |
+
MAX_LENGTH = 1000 # max length of question or answer
|
24 |
|
25 |
|
26 |
def main():
|
27 |
datasets = sys.argv[1:] if len(sys.argv) > 1 else list_cached_datasets()
|
|
|
|
|
28 |
for dataset in datasets:
|
29 |
process_dataset(dataset)
|
30 |
|
|
|
40 |
xml_file = f"{XML_DIR}/{dataset}.xml"
|
41 |
parquet_file = PARQUET_FILE.format(dataset)
|
42 |
source = SOURCE.format(dataset)
|
43 |
+
if not os.path.exists(xml_file):
|
44 |
+
print(f"XML file {xml_file} not found, please download first. Skipping...")
|
45 |
+
elif not os.path.exists(parquet_file):
|
46 |
+
df = parse_and_convert(xml_file, source)
|
47 |
+
save_parquet(df, dataset)
|
48 |
# upload_hf(dataset)
|
49 |
else:
|
50 |
+
print(f"File already converted {xml_file}. Skipping...")
|
51 |
+
|
52 |
+
|
53 |
+
def parse_and_convert(path: str, source: str):
|
54 |
+
"""
|
55 |
+
Parse (very large) XML files with sax parser and load it into a pandas Dataframe
|
56 |
+
"""
|
57 |
+
total_rows = int(subprocess.getoutput(f"grep -c '<row' {path}"))
|
58 |
+
print(f"Parsing {total_rows} rows from {path}...")
|
59 |
+
columns = "Id PostTypeId Body Title Tags Score AcceptedAnswerId ParentId"
|
60 |
+
rows = []
|
61 |
+
max_process = 10**6
|
62 |
+
processed = 0
|
63 |
+
oa_df = pd.DataFrame(columns=["INSTRUCTION", "RESPONSE", "SOURCE", "METADATA"])
|
64 |
+
|
65 |
+
context = etree.iterparse(path, events=("end",))
|
66 |
+
|
67 |
+
for _, element in tqdm(context, total=total_rows):
|
68 |
+
if element.tag == "row":
|
69 |
+
if len(element.get("Body")) > MAX_LENGTH:
|
70 |
+
continue
|
71 |
+
rows.append(parse_row(element))
|
72 |
+
processed += 1
|
73 |
+
element.clear()
|
74 |
+
while element.getprevious() is not None:
|
75 |
+
del element.getparent()[0]
|
76 |
+
|
77 |
+
if processed % max_process == 0 or processed == total_rows:
|
78 |
+
df = pd.DataFrame(rows, columns=columns.split())
|
79 |
+
rows = []
|
80 |
+
oa = convert_to_oa(df, source)
|
81 |
+
oa_df = pd.concat([oa_df, oa])
|
82 |
+
del df
|
83 |
+
del oa
|
84 |
+
gc.collect()
|
85 |
|
86 |
+
return oa_df
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
def parse_row(element):
|
90 |
+
return [
|
91 |
+
int(element.get("Id")),
|
92 |
+
int(element.get("PostTypeId")),
|
93 |
+
element.get("Body"),
|
94 |
+
element.get("Title", ""),
|
95 |
+
element.get("Tags", ""),
|
96 |
+
int(element.get("Score", 0)),
|
97 |
+
int(element.get("AcceptedAnswerId", 0)),
|
98 |
+
int(element.get("ParentId", 0)),
|
99 |
+
]
|
100 |
|
101 |
|
102 |
def convert_to_oa(all, source):
|
|
|
105 |
|
106 |
Only include questions with an AcceptedAnswerId
|
107 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
questions = all[all["AcceptedAnswerId"] != 0]
|
109 |
merged = pd.merge(
|
110 |
questions,
|
111 |
all,
|
112 |
+
how="inner",
|
113 |
left_on="AcceptedAnswerId",
|
114 |
right_on="Id",
|
115 |
suffixes=("_q", "_a"),
|
116 |
)
|
117 |
+
|
118 |
del all
|
119 |
|
120 |
merged["INSTRUCTION"] = (
|
|
|
127 |
return merged[["INSTRUCTION", "RESPONSE", "SOURCE", "METADATA"]]
|
128 |
|
129 |
|
130 |
+
def convert_tags(raw):
|
131 |
+
return raw.replace("-", " ").replace("><", ", ").replace("<", "").replace(">", "")
|
132 |
+
|
133 |
+
|
134 |
+
def create_metadata(row):
|
135 |
+
return {
|
136 |
+
"tags": convert_tags(row["Tags_q"]),
|
137 |
+
"question_score": row["Score_q"],
|
138 |
+
"answer_score": row["Score_a"],
|
139 |
+
}
|
140 |
+
|
141 |
+
|
142 |
def save_parquet(df, dataset):
|
143 |
"""
|
144 |
Save Dataframe to Parquet. See here for specs:
|
|
|
159 |
print("Uploaded to Hugging Face: " + HF_DATASET)
|
160 |
|
161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
remove_markdown_links_pattern = r"\[([^\]]+)\]\(([^\)]+)\)"
|
163 |
remove_remaining_links = r"https?:\/\/[^\s]+"
|
164 |
|