Datasets:

ArXiv:
diffusers-benchmarking-bot commited on
Commit
7585c65
·
verified ·
1 Parent(s): 1bc88b2

Upload folder using huggingface_hub

Browse files
Files changed (45) hide show
  1. main/README.md +1 -1
  2. main/adaptive_mask_inpainting.py +6 -6
  3. main/composable_stable_diffusion.py +3 -3
  4. main/fresco_v2v.py +1 -1
  5. main/hd_painter.py +1 -1
  6. main/img2img_inpainting.py +1 -1
  7. main/instaflow_one_step.py +3 -3
  8. main/ip_adapter_face_id.py +3 -3
  9. main/kohya_hires_fix.py +1 -1
  10. main/latent_consistency_interpolate.py +1 -1
  11. main/llm_grounded_diffusion.py +3 -3
  12. main/lpw_stable_diffusion.py +2 -2
  13. main/lpw_stable_diffusion_xl.py +1 -1
  14. main/matryoshka.py +2 -2
  15. main/multilingual_stable_diffusion.py +1 -1
  16. main/pipeline_controlnet_xl_kolors_inpaint.py +1 -1
  17. main/pipeline_fabric.py +3 -3
  18. main/pipeline_kolors_inpainting.py +1 -1
  19. main/pipeline_prompt2prompt.py +3 -3
  20. main/pipeline_sdxl_style_aligned.py +1 -1
  21. main/pipeline_stable_diffusion_boxdiff.py +4 -4
  22. main/pipeline_stable_diffusion_pag.py +4 -4
  23. main/pipeline_stable_diffusion_upscale_ldm3d.py +1 -1
  24. main/pipeline_stable_diffusion_xl_attentive_eraser.py +1 -1
  25. main/pipeline_stable_diffusion_xl_controlnet_adapter.py +1 -1
  26. main/pipeline_stable_diffusion_xl_controlnet_adapter_inpaint.py +2 -2
  27. main/pipeline_zero1to3.py +4 -4
  28. main/rerender_a_video.py +1 -1
  29. main/run_onnx_controlnet.py +1 -1
  30. main/run_tensorrt_controlnet.py +1 -1
  31. main/sd_text2img_k_diffusion.py +1 -1
  32. main/sde_drag.py +1 -1
  33. main/stable_diffusion_comparison.py +1 -1
  34. main/stable_diffusion_controlnet_img2img.py +1 -1
  35. main/stable_diffusion_controlnet_inpaint.py +1 -1
  36. main/stable_diffusion_controlnet_inpaint_img2img.py +1 -1
  37. main/stable_diffusion_controlnet_reference.py +1 -1
  38. main/stable_diffusion_ipex.py +4 -4
  39. main/stable_diffusion_mega.py +1 -1
  40. main/stable_diffusion_reference.py +4 -4
  41. main/stable_diffusion_repaint.py +3 -3
  42. main/stable_diffusion_tensorrt_img2img.py +3 -3
  43. main/stable_diffusion_tensorrt_inpaint.py +3 -3
  44. main/stable_diffusion_tensorrt_txt2img.py +3 -3
  45. main/text_inpainting.py +1 -1
main/README.md CHANGED
@@ -1328,7 +1328,7 @@ model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined"
1328
 
1329
  # Load Stable Diffusion Inpainting Pipeline with custom pipeline
1330
  pipe = DiffusionPipeline.from_pretrained(
1331
- "runwayml/stable-diffusion-inpainting",
1332
  custom_pipeline="text_inpainting",
1333
  segmentation_model=model,
1334
  segmentation_processor=processor
 
1328
 
1329
  # Load Stable Diffusion Inpainting Pipeline with custom pipeline
1330
  pipe = DiffusionPipeline.from_pretrained(
1331
+ "stable-diffusion-v1-5/stable-diffusion-inpainting",
1332
  custom_pipeline="text_inpainting",
1333
  segmentation_model=model,
1334
  segmentation_processor=processor
main/adaptive_mask_inpainting.py CHANGED
@@ -126,7 +126,7 @@ EXAMPLE_DOC_STRING = """
126
  ... "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
127
  ... )
128
  >>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
129
- ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
130
  ... )
131
 
132
  >>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
@@ -347,7 +347,7 @@ class AdaptiveMaskInpaintPipeline(
347
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
348
  safety_checker ([`StableDiffusionSafetyChecker`]):
349
  Classification module that estimates whether generated images could be considered offensive or harmful.
350
- Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
351
  about a model's potential harms.
352
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
353
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
@@ -429,8 +429,8 @@ class AdaptiveMaskInpaintPipeline(
429
  "The configuration file of the unet has set the default `sample_size` to smaller than"
430
  " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
431
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
432
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
433
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
434
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
435
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
436
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
@@ -970,7 +970,7 @@ class AdaptiveMaskInpaintPipeline(
970
  >>> default_mask_image = download_image(mask_url).resize((512, 512))
971
 
972
  >>> pipe = AdaptiveMaskInpaintPipeline.from_pretrained(
973
- ... "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
974
  ... )
975
  >>> pipe = pipe.to("cuda")
976
 
@@ -1095,7 +1095,7 @@ class AdaptiveMaskInpaintPipeline(
1095
 
1096
  # 8. Check that sizes of mask, masked image and latents match
1097
  if num_channels_unet == 9:
1098
- # default case for runwayml/stable-diffusion-inpainting
1099
  num_channels_mask = mask.shape[1]
1100
  num_channels_masked_image = masked_image_latents.shape[1]
1101
  if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
 
126
  ... "lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16
127
  ... )
128
  >>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
129
+ ... "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
130
  ... )
131
 
132
  >>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
 
347
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
348
  safety_checker ([`StableDiffusionSafetyChecker`]):
349
  Classification module that estimates whether generated images could be considered offensive or harmful.
350
+ Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
351
  about a model's potential harms.
352
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
353
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
 
429
  "The configuration file of the unet has set the default `sample_size` to smaller than"
430
  " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
431
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
432
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
433
+ " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
434
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
435
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
436
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
 
970
  >>> default_mask_image = download_image(mask_url).resize((512, 512))
971
 
972
  >>> pipe = AdaptiveMaskInpaintPipeline.from_pretrained(
973
+ ... "stable-diffusion-v1-5/stable-diffusion-inpainting", torch_dtype=torch.float16
974
  ... )
975
  >>> pipe = pipe.to("cuda")
976
 
 
1095
 
1096
  # 8. Check that sizes of mask, masked image and latents match
1097
  if num_channels_unet == 9:
1098
+ # default case for stable-diffusion-v1-5/stable-diffusion-inpainting
1099
  num_channels_mask = mask.shape[1]
1100
  num_channels_masked_image = masked_image_latents.shape[1]
1101
  if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
main/composable_stable_diffusion.py CHANGED
@@ -62,7 +62,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin)
62
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
63
  safety_checker ([`StableDiffusionSafetyChecker`]):
64
  Classification module that estimates whether generated images could be considered offensive or harmful.
65
- Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
66
  feature_extractor ([`CLIPImageProcessor`]):
67
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
68
  """
@@ -145,8 +145,8 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin)
145
  "The configuration file of the unet has set the default `sample_size` to smaller than"
146
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
147
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
148
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
149
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
150
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
151
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
152
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
 
62
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
63
  safety_checker ([`StableDiffusionSafetyChecker`]):
64
  Classification module that estimates whether generated images could be considered offensive or harmful.
65
+ Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
66
  feature_extractor ([`CLIPImageProcessor`]):
67
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
68
  """
 
145
  "The configuration file of the unet has set the default `sample_size` to smaller than"
146
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
147
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
148
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
149
+ " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
150
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
151
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
152
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
main/fresco_v2v.py CHANGED
@@ -1276,7 +1276,7 @@ class FrescoV2VPipeline(StableDiffusionControlNetImg2ImgPipeline):
1276
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
1277
  safety_checker ([`StableDiffusionSafetyChecker`]):
1278
  Classification module that estimates whether generated images could be considered offensive or harmful.
1279
- Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
1280
  about a model's potential harms.
1281
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
1282
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
 
1276
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
1277
  safety_checker ([`StableDiffusionSafetyChecker`]):
1278
  Classification module that estimates whether generated images could be considered offensive or harmful.
1279
+ Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
1280
  about a model's potential harms.
1281
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
1282
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
main/hd_painter.py CHANGED
@@ -678,7 +678,7 @@ class StableDiffusionHDPainterPipeline(StableDiffusionInpaintPipeline):
678
 
679
  # 8. Check that sizes of mask, masked image and latents match
680
  if num_channels_unet == 9:
681
- # default case for runwayml/stable-diffusion-inpainting
682
  num_channels_mask = mask.shape[1]
683
  num_channels_masked_image = masked_image_latents.shape[1]
684
  if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
 
678
 
679
  # 8. Check that sizes of mask, masked image and latents match
680
  if num_channels_unet == 9:
681
+ # default case for stable-diffusion-v1-5/stable-diffusion-inpainting
682
  num_channels_mask = mask.shape[1]
683
  num_channels_masked_image = masked_image_latents.shape[1]
684
  if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
main/img2img_inpainting.py CHANGED
@@ -78,7 +78,7 @@ class ImageToImageInpaintingPipeline(DiffusionPipeline):
78
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
79
  safety_checker ([`StableDiffusionSafetyChecker`]):
80
  Classification module that estimates whether generated images could be considered offensive or harmful.
81
- Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
82
  feature_extractor ([`CLIPImageProcessor`]):
83
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
84
  """
 
78
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
79
  safety_checker ([`StableDiffusionSafetyChecker`]):
80
  Classification module that estimates whether generated images could be considered offensive or harmful.
81
+ Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
82
  feature_extractor ([`CLIPImageProcessor`]):
83
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
84
  """
main/instaflow_one_step.py CHANGED
@@ -86,7 +86,7 @@ class InstaFlowPipeline(
86
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
87
  safety_checker ([`StableDiffusionSafetyChecker`]):
88
  Classification module that estimates whether generated images could be considered offensive or harmful.
89
- Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
90
  about a model's potential harms.
91
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
92
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
@@ -165,8 +165,8 @@ class InstaFlowPipeline(
165
  "The configuration file of the unet has set the default `sample_size` to smaller than"
166
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
167
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
168
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
169
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
170
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
171
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
172
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
 
86
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
87
  safety_checker ([`StableDiffusionSafetyChecker`]):
88
  Classification module that estimates whether generated images could be considered offensive or harmful.
89
+ Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
90
  about a model's potential harms.
91
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
92
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
 
165
  "The configuration file of the unet has set the default `sample_size` to smaller than"
166
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
167
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
168
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
169
+ " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
170
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
171
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
172
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
main/ip_adapter_face_id.py CHANGED
@@ -166,7 +166,7 @@ class IPAdapterFaceIDStableDiffusionPipeline(
166
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
167
  safety_checker ([`StableDiffusionSafetyChecker`]):
168
  Classification module that estimates whether generated images could be considered offensive or harmful.
169
- Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
170
  about a model's potential harms.
171
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
172
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
@@ -247,8 +247,8 @@ class IPAdapterFaceIDStableDiffusionPipeline(
247
  "The configuration file of the unet has set the default `sample_size` to smaller than"
248
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
249
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
250
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
251
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
252
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
253
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
254
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
 
166
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
167
  safety_checker ([`StableDiffusionSafetyChecker`]):
168
  Classification module that estimates whether generated images could be considered offensive or harmful.
169
+ Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
170
  about a model's potential harms.
171
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
172
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
 
247
  "The configuration file of the unet has set the default `sample_size` to smaller than"
248
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
249
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
250
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
251
+ " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
252
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
253
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
254
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
main/kohya_hires_fix.py CHANGED
@@ -414,7 +414,7 @@ class StableDiffusionHighResFixPipeline(StableDiffusionPipeline):
414
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
415
  safety_checker ([`StableDiffusionSafetyChecker`]):
416
  Classification module that estimates whether generated images could be considered offensive or harmful.
417
- Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
418
  about a model's potential harms.
419
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
420
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
 
414
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
415
  safety_checker ([`StableDiffusionSafetyChecker`]):
416
  Classification module that estimates whether generated images could be considered offensive or harmful.
417
+ Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
418
  about a model's potential harms.
419
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
420
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
main/latent_consistency_interpolate.py CHANGED
@@ -222,7 +222,7 @@ class LatentConsistencyModelWalkPipeline(
222
  supports [`LCMScheduler`].
223
  safety_checker ([`StableDiffusionSafetyChecker`]):
224
  Classification module that estimates whether generated images could be considered offensive or harmful.
225
- Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
226
  about a model's potential harms.
227
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
228
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
 
222
  supports [`LCMScheduler`].
223
  safety_checker ([`StableDiffusionSafetyChecker`]):
224
  Classification module that estimates whether generated images could be considered offensive or harmful.
225
+ Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
226
  about a model's potential harms.
227
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
228
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
main/llm_grounded_diffusion.py CHANGED
@@ -302,7 +302,7 @@ class LLMGroundedDiffusionPipeline(
302
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
303
  safety_checker ([`StableDiffusionSafetyChecker`]):
304
  Classification module that estimates whether generated images could be considered offensive or harmful.
305
- Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
306
  about a model's potential harms.
307
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
308
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
@@ -392,8 +392,8 @@ class LLMGroundedDiffusionPipeline(
392
  "The configuration file of the unet has set the default `sample_size` to smaller than"
393
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
394
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
395
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
396
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
397
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
398
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
399
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
 
302
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
303
  safety_checker ([`StableDiffusionSafetyChecker`]):
304
  Classification module that estimates whether generated images could be considered offensive or harmful.
305
+ Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
306
  about a model's potential harms.
307
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
308
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
 
392
  "The configuration file of the unet has set the default `sample_size` to smaller than"
393
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
394
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
395
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
396
+ " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
397
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
398
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
399
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
main/lpw_stable_diffusion.py CHANGED
@@ -552,8 +552,8 @@ class StableDiffusionLongPromptWeightingPipeline(
552
  "The configuration file of the unet has set the default `sample_size` to smaller than"
553
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
554
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
555
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
556
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
557
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
558
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
559
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
 
552
  "The configuration file of the unet has set the default `sample_size` to smaller than"
553
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
554
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
555
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
556
+ " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
557
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
558
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
559
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
main/lpw_stable_diffusion_xl.py CHANGED
@@ -1765,7 +1765,7 @@ class SDXLLongPromptWeightingPipeline(
1765
 
1766
  # Check that sizes of mask, masked image and latents match
1767
  if num_channels_unet == 9:
1768
- # default case for runwayml/stable-diffusion-inpainting
1769
  num_channels_mask = mask.shape[1]
1770
  num_channels_masked_image = masked_image_latents.shape[1]
1771
  if num_channels_latents + num_channels_mask + num_channels_masked_image != num_channels_unet:
 
1765
 
1766
  # Check that sizes of mask, masked image and latents match
1767
  if num_channels_unet == 9:
1768
+ # default case for stable-diffusion-v1-5/stable-diffusion-inpainting
1769
  num_channels_mask = mask.shape[1]
1770
  num_channels_masked_image = masked_image_latents.shape[1]
1771
  if num_channels_latents + num_channels_mask + num_channels_masked_image != num_channels_unet:
main/matryoshka.py CHANGED
@@ -3729,8 +3729,8 @@ class MatryoshkaPipeline(
3729
  "The configuration file of the unet has set the default `sample_size` to smaller than"
3730
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
3731
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
3732
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
3733
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
3734
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
3735
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
3736
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
 
3729
  "The configuration file of the unet has set the default `sample_size` to smaller than"
3730
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
3731
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
3732
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
3733
+ " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
3734
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
3735
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
3736
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
main/multilingual_stable_diffusion.py CHANGED
@@ -78,7 +78,7 @@ class MultilingualStableDiffusion(DiffusionPipeline, StableDiffusionMixin):
78
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
79
  safety_checker ([`StableDiffusionSafetyChecker`]):
80
  Classification module that estimates whether generated images could be considered offensive or harmful.
81
- Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
82
  feature_extractor ([`CLIPImageProcessor`]):
83
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
84
  """
 
78
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
79
  safety_checker ([`StableDiffusionSafetyChecker`]):
80
  Classification module that estimates whether generated images could be considered offensive or harmful.
81
+ Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
82
  feature_extractor ([`CLIPImageProcessor`]):
83
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
84
  """
main/pipeline_controlnet_xl_kolors_inpaint.py CHANGED
@@ -1607,7 +1607,7 @@ class KolorsControlNetInpaintPipeline(
1607
 
1608
  # 9. Check that sizes of mask, masked image and latents match
1609
  if num_channels_unet == 9:
1610
- # default case for runwayml/stable-diffusion-inpainting
1611
  num_channels_mask = mask.shape[1]
1612
  num_channels_masked_image = masked_image_latents.shape[1]
1613
  if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
 
1607
 
1608
  # 9. Check that sizes of mask, masked image and latents match
1609
  if num_channels_unet == 9:
1610
+ # default case for stable-diffusion-v1-5/stable-diffusion-inpainting
1611
  num_channels_mask = mask.shape[1]
1612
  num_channels_masked_image = masked_image_latents.shape[1]
1613
  if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
main/pipeline_fabric.py CHANGED
@@ -135,7 +135,7 @@ class FabricPipeline(DiffusionPipeline):
135
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
136
  safety_checker ([`StableDiffusionSafetyChecker`]):
137
  Classification module that estimates whether generated images could be considered offensive or harmful.
138
- Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
139
  about a model's potential harms.
140
  """
141
 
@@ -163,8 +163,8 @@ class FabricPipeline(DiffusionPipeline):
163
  "The configuration file of the unet has set the default `sample_size` to smaller than"
164
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
165
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
166
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
167
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
168
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
169
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
170
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
 
135
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
136
  safety_checker ([`StableDiffusionSafetyChecker`]):
137
  Classification module that estimates whether generated images could be considered offensive or harmful.
138
+ Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
139
  about a model's potential harms.
140
  """
141
 
 
163
  "The configuration file of the unet has set the default `sample_size` to smaller than"
164
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
165
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
166
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
167
+ " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
168
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
169
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
170
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
main/pipeline_kolors_inpainting.py CHANGED
@@ -1487,7 +1487,7 @@ class KolorsInpaintPipeline(
1487
 
1488
  # 8. Check that sizes of mask, masked image and latents match
1489
  if num_channels_unet == 9:
1490
- # default case for runwayml/stable-diffusion-inpainting
1491
  num_channels_mask = mask.shape[1]
1492
  num_channels_masked_image = masked_image_latents.shape[1]
1493
  if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
 
1487
 
1488
  # 8. Check that sizes of mask, masked image and latents match
1489
  if num_channels_unet == 9:
1490
+ # default case for stable-diffusion-v1-5/stable-diffusion-inpainting
1491
  num_channels_mask = mask.shape[1]
1492
  num_channels_masked_image = masked_image_latents.shape[1]
1493
  if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
main/pipeline_prompt2prompt.py CHANGED
@@ -106,7 +106,7 @@ class Prompt2PromptPipeline(
106
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
107
  safety_checker ([`StableDiffusionSafetyChecker`]):
108
  Classification module that estimates whether generated images could be considered offensive or harmful.
109
- Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
110
  about a model's potential harms.
111
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
112
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
@@ -187,8 +187,8 @@ class Prompt2PromptPipeline(
187
  "The configuration file of the unet has set the default `sample_size` to smaller than"
188
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
189
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
190
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
191
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
192
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
193
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
194
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
 
106
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
107
  safety_checker ([`StableDiffusionSafetyChecker`]):
108
  Classification module that estimates whether generated images could be considered offensive or harmful.
109
+ Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
110
  about a model's potential harms.
111
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
112
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
 
187
  "The configuration file of the unet has set the default `sample_size` to smaller than"
188
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
189
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
190
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
191
+ " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
192
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
193
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
194
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
main/pipeline_sdxl_style_aligned.py CHANGED
@@ -1730,7 +1730,7 @@ class StyleAlignedSDXLPipeline(
1730
 
1731
  # Check that sizes of mask, masked image and latents match
1732
  if num_channels_unet == 9:
1733
- # default case for runwayml/stable-diffusion-inpainting
1734
  num_channels_mask = mask.shape[1]
1735
  num_channels_masked_image = masked_image_latents.shape[1]
1736
  if num_channels_latents + num_channels_mask + num_channels_masked_image != num_channels_unet:
 
1730
 
1731
  # Check that sizes of mask, masked image and latents match
1732
  if num_channels_unet == 9:
1733
+ # default case for stable-diffusion-v1-5/stable-diffusion-inpainting
1734
  num_channels_mask = mask.shape[1]
1735
  num_channels_masked_image = masked_image_latents.shape[1]
1736
  if num_channels_latents + num_channels_mask + num_channels_masked_image != num_channels_unet:
main/pipeline_stable_diffusion_boxdiff.py CHANGED
@@ -59,7 +59,7 @@ EXAMPLE_DOC_STRING = """
59
  >>> import torch
60
  >>> from diffusers import StableDiffusionPipeline
61
 
62
- >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
63
  >>> pipe = pipe.to("cuda")
64
 
65
  >>> prompt = "a photo of an astronaut riding a horse on mars"
@@ -392,7 +392,7 @@ class StableDiffusionBoxDiffPipeline(
392
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
393
  safety_checker ([`StableDiffusionSafetyChecker`]):
394
  Classification module that estimates whether generated images could be considered offensive or harmful.
395
- Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
396
  about a model's potential harms.
397
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
398
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
@@ -473,8 +473,8 @@ class StableDiffusionBoxDiffPipeline(
473
  "The configuration file of the unet has set the default `sample_size` to smaller than"
474
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
475
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
476
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
477
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
478
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
479
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
480
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
 
59
  >>> import torch
60
  >>> from diffusers import StableDiffusionPipeline
61
 
62
+ >>> pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16)
63
  >>> pipe = pipe.to("cuda")
64
 
65
  >>> prompt = "a photo of an astronaut riding a horse on mars"
 
392
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
393
  safety_checker ([`StableDiffusionSafetyChecker`]):
394
  Classification module that estimates whether generated images could be considered offensive or harmful.
395
+ Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
396
  about a model's potential harms.
397
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
398
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
 
473
  "The configuration file of the unet has set the default `sample_size` to smaller than"
474
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
475
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
476
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
477
+ " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
478
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
479
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
480
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
main/pipeline_stable_diffusion_pag.py CHANGED
@@ -42,7 +42,7 @@ EXAMPLE_DOC_STRING = """
42
  ```py
43
  >>> import torch
44
  >>> from diffusers import StableDiffusionPipeline
45
- >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
46
  >>> pipe = pipe.to("cuda")
47
  >>> prompt = "a photo of an astronaut riding a horse on mars"
48
  >>> image = pipe(prompt).images[0]
@@ -359,7 +359,7 @@ class StableDiffusionPAGPipeline(
359
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
360
  safety_checker ([`StableDiffusionSafetyChecker`]):
361
  Classification module that estimates whether generated images could be considered offensive or harmful.
362
- Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
363
  about a model's potential harms.
364
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
365
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
@@ -440,8 +440,8 @@ class StableDiffusionPAGPipeline(
440
  "The configuration file of the unet has set the default `sample_size` to smaller than"
441
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
442
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
443
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
444
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
445
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
446
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
447
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
 
42
  ```py
43
  >>> import torch
44
  >>> from diffusers import StableDiffusionPipeline
45
+ >>> pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16)
46
  >>> pipe = pipe.to("cuda")
47
  >>> prompt = "a photo of an astronaut riding a horse on mars"
48
  >>> image = pipe(prompt).images[0]
 
359
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
360
  safety_checker ([`StableDiffusionSafetyChecker`]):
361
  Classification module that estimates whether generated images could be considered offensive or harmful.
362
+ Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
363
  about a model's potential harms.
364
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
365
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
 
440
  "The configuration file of the unet has set the default `sample_size` to smaller than"
441
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
442
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
443
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
444
+ " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
445
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
446
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
447
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
main/pipeline_stable_diffusion_upscale_ldm3d.py CHANGED
@@ -100,7 +100,7 @@ class StableDiffusionUpscaleLDM3DPipeline(
100
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
101
  safety_checker ([`StableDiffusionSafetyChecker`]):
102
  Classification module that estimates whether generated images could be considered offensive or harmful.
103
- Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
104
  about a model's potential harms.
105
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
106
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
 
100
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
101
  safety_checker ([`StableDiffusionSafetyChecker`]):
102
  Classification module that estimates whether generated images could be considered offensive or harmful.
103
+ Please refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for more details
104
  about a model's potential harms.
105
  feature_extractor ([`~transformers.CLIPImageProcessor`]):
106
  A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
main/pipeline_stable_diffusion_xl_attentive_eraser.py CHANGED
@@ -2042,7 +2042,7 @@ class StableDiffusionXL_AE_Pipeline(
2042
 
2043
  # 8. Check that sizes of mask, masked image and latents match
2044
  if num_channels_unet == 9:
2045
- # default case for runwayml/stable-diffusion-inpainting
2046
  num_channels_mask = mask.shape[1]
2047
  num_channels_masked_image = masked_image_latents.shape[1]
2048
  if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
 
2042
 
2043
  # 8. Check that sizes of mask, masked image and latents match
2044
  if num_channels_unet == 9:
2045
+ # default case for stable-diffusion-v1-5/stable-diffusion-inpainting
2046
  num_channels_mask = mask.shape[1]
2047
  num_channels_masked_image = masked_image_latents.shape[1]
2048
  if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
main/pipeline_stable_diffusion_xl_controlnet_adapter.py CHANGED
@@ -188,7 +188,7 @@ class StableDiffusionXLControlNetAdapterPipeline(
188
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
189
  safety_checker ([`StableDiffusionSafetyChecker`]):
190
  Classification module that estimates whether generated images could be considered offensive or harmful.
191
- Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
192
  feature_extractor ([`CLIPImageProcessor`]):
193
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
194
  """
 
188
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
189
  safety_checker ([`StableDiffusionSafetyChecker`]):
190
  Classification module that estimates whether generated images could be considered offensive or harmful.
191
+ Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
192
  feature_extractor ([`CLIPImageProcessor`]):
193
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
194
  """
main/pipeline_stable_diffusion_xl_controlnet_adapter_inpaint.py CHANGED
@@ -330,7 +330,7 @@ class StableDiffusionXLControlNetAdapterInpaintPipeline(
330
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
331
  safety_checker ([`StableDiffusionSafetyChecker`]):
332
  Classification module that estimates whether generated images could be considered offensive or harmful.
333
- Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
334
  feature_extractor ([`CLIPImageProcessor`]):
335
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
336
  requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
@@ -1569,7 +1569,7 @@ class StableDiffusionXLControlNetAdapterInpaintPipeline(
1569
 
1570
  # 8. Check that sizes of mask, masked image and latents match
1571
  if num_channels_unet == 9:
1572
- # default case for runwayml/stable-diffusion-inpainting
1573
  num_channels_mask = mask.shape[1]
1574
  num_channels_masked_image = masked_image_latents.shape[1]
1575
  if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
 
330
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
331
  safety_checker ([`StableDiffusionSafetyChecker`]):
332
  Classification module that estimates whether generated images could be considered offensive or harmful.
333
+ Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
334
  feature_extractor ([`CLIPImageProcessor`]):
335
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
336
  requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
 
1569
 
1570
  # 8. Check that sizes of mask, masked image and latents match
1571
  if num_channels_unet == 9:
1572
+ # default case for stable-diffusion-v1-5/stable-diffusion-inpainting
1573
  num_channels_mask = mask.shape[1]
1574
  num_channels_masked_image = masked_image_latents.shape[1]
1575
  if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
main/pipeline_zero1to3.py CHANGED
@@ -46,7 +46,7 @@ EXAMPLE_DOC_STRING = """
46
  >>> import torch
47
  >>> from diffusers import StableDiffusionPipeline
48
 
49
- >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
50
  >>> pipe = pipe.to("cuda")
51
 
52
  >>> prompt = "a photo of an astronaut riding a horse on mars"
@@ -86,7 +86,7 @@ class Zero1to3StableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin):
86
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
87
  safety_checker ([`StableDiffusionSafetyChecker`]):
88
  Classification module that estimates whether generated images could be considered offensive or harmful.
89
- Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
90
  feature_extractor ([`CLIPImageProcessor`]):
91
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
92
  cc_projection ([`CCProjection`]):
@@ -164,8 +164,8 @@ class Zero1to3StableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin):
164
  "The configuration file of the unet has set the default `sample_size` to smaller than"
165
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
166
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
167
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
168
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
169
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
170
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
171
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
 
46
  >>> import torch
47
  >>> from diffusers import StableDiffusionPipeline
48
 
49
+ >>> pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", torch_dtype=torch.float16)
50
  >>> pipe = pipe.to("cuda")
51
 
52
  >>> prompt = "a photo of an astronaut riding a horse on mars"
 
86
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
87
  safety_checker ([`StableDiffusionSafetyChecker`]):
88
  Classification module that estimates whether generated images could be considered offensive or harmful.
89
+ Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
90
  feature_extractor ([`CLIPImageProcessor`]):
91
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
92
  cc_projection ([`CCProjection`]):
 
164
  "The configuration file of the unet has set the default `sample_size` to smaller than"
165
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
166
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
167
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
168
+ " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
169
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
170
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
171
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
main/rerender_a_video.py CHANGED
@@ -288,7 +288,7 @@ class RerenderAVideoPipeline(StableDiffusionControlNetImg2ImgPipeline):
288
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
289
  safety_checker ([`StableDiffusionSafetyChecker`]):
290
  Classification module that estimates whether generated images could be considered offensive or harmful.
291
- Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
292
  feature_extractor ([`CLIPImageProcessor`]):
293
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
294
  """
 
288
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
289
  safety_checker ([`StableDiffusionSafetyChecker`]):
290
  Classification module that estimates whether generated images could be considered offensive or harmful.
291
+ Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
292
  feature_extractor ([`CLIPImageProcessor`]):
293
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
294
  """
main/run_onnx_controlnet.py CHANGED
@@ -54,7 +54,7 @@ EXAMPLE_DOC_STRING = """
54
  >>> # load control net and stable diffusion v1-5
55
  >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
56
  >>> pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
57
- ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
58
  ... )
59
 
60
  >>> # speed up diffusion process with faster scheduler and memory optimization
 
54
  >>> # load control net and stable diffusion v1-5
55
  >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
56
  >>> pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
57
+ ... "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
58
  ... )
59
 
60
  >>> # speed up diffusion process with faster scheduler and memory optimization
main/run_tensorrt_controlnet.py CHANGED
@@ -158,7 +158,7 @@ EXAMPLE_DOC_STRING = """
158
  >>> # load control net and stable diffusion v1-5
159
  >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
160
  >>> pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
161
- ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
162
  ... )
163
 
164
  >>> # speed up diffusion process with faster scheduler and memory optimization
 
158
  >>> # load control net and stable diffusion v1-5
159
  >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
160
  >>> pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
161
+ ... "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
162
  ... )
163
 
164
  >>> # speed up diffusion process with faster scheduler and memory optimization
main/sd_text2img_k_diffusion.py CHANGED
@@ -64,7 +64,7 @@ class StableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin):
64
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
65
  safety_checker ([`StableDiffusionSafetyChecker`]):
66
  Classification module that estimates whether generated images could be considered offensive or harmful.
67
- Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
68
  feature_extractor ([`CLIPImageProcessor`]):
69
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
70
  """
 
64
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
65
  safety_checker ([`StableDiffusionSafetyChecker`]):
66
  Classification module that estimates whether generated images could be considered offensive or harmful.
67
+ Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
68
  feature_extractor ([`CLIPImageProcessor`]):
69
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
70
  """
main/sde_drag.py CHANGED
@@ -114,7 +114,7 @@ class SdeDragPipeline(DiffusionPipeline):
114
  >>> from diffusers import DDIMScheduler, DiffusionPipeline
115
 
116
  >>> # Load the pipeline
117
- >>> model_path = "runwayml/stable-diffusion-v1-5"
118
  >>> scheduler = DDIMScheduler.from_pretrained(model_path, subfolder="scheduler")
119
  >>> pipe = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler, custom_pipeline="sde_drag")
120
  >>> pipe.to('cuda')
 
114
  >>> from diffusers import DDIMScheduler, DiffusionPipeline
115
 
116
  >>> # Load the pipeline
117
+ >>> model_path = "stable-diffusion-v1-5/stable-diffusion-v1-5"
118
  >>> scheduler = DDIMScheduler.from_pretrained(model_path, subfolder="scheduler")
119
  >>> pipe = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler, custom_pipeline="sde_drag")
120
  >>> pipe.to('cuda')
main/stable_diffusion_comparison.py CHANGED
@@ -46,7 +46,7 @@ class StableDiffusionComparisonPipeline(DiffusionPipeline, StableDiffusionMixin)
46
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
47
  safety_checker ([`StableDiffusionMegaSafetyChecker`]):
48
  Classification module that estimates whether generated images could be considered offensive or harmful.
49
- Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
50
  feature_extractor ([`CLIPImageProcessor`]):
51
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
52
  """
 
46
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
47
  safety_checker ([`StableDiffusionMegaSafetyChecker`]):
48
  Classification module that estimates whether generated images could be considered offensive or harmful.
49
+ Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
50
  feature_extractor ([`CLIPImageProcessor`]):
51
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
52
  """
main/stable_diffusion_controlnet_img2img.py CHANGED
@@ -36,7 +36,7 @@ EXAMPLE_DOC_STRING = """
36
  >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
37
 
38
  >>> pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
39
- "runwayml/stable-diffusion-v1-5",
40
  controlnet=controlnet,
41
  safety_checker=None,
42
  torch_dtype=torch.float16
 
36
  >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
37
 
38
  >>> pipe_controlnet = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
39
+ "stable-diffusion-v1-5/stable-diffusion-v1-5",
40
  controlnet=controlnet,
41
  safety_checker=None,
42
  torch_dtype=torch.float16
main/stable_diffusion_controlnet_inpaint.py CHANGED
@@ -81,7 +81,7 @@ EXAMPLE_DOC_STRING = """
81
  >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16)
82
 
83
  >>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
84
- "runwayml/stable-diffusion-inpainting", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
85
  )
86
 
87
  >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
 
81
  >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16)
82
 
83
  >>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
84
+ "stable-diffusion-v1-5/stable-diffusion-inpainting", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
85
  )
86
 
87
  >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
main/stable_diffusion_controlnet_inpaint_img2img.py CHANGED
@@ -80,7 +80,7 @@ EXAMPLE_DOC_STRING = """
80
  >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16)
81
 
82
  >>> pipe = StableDiffusionControlNetInpaintImg2ImgPipeline.from_pretrained(
83
- "runwayml/stable-diffusion-inpainting", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
84
  )
85
 
86
  >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
 
80
  >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16)
81
 
82
  >>> pipe = StableDiffusionControlNetInpaintImg2ImgPipeline.from_pretrained(
83
+ "stable-diffusion-v1-5/stable-diffusion-inpainting", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
84
  )
85
 
86
  >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
main/stable_diffusion_controlnet_reference.py CHANGED
@@ -37,7 +37,7 @@ EXAMPLE_DOC_STRING = """
37
 
38
  >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
39
  >>> pipe = StableDiffusionControlNetReferencePipeline.from_pretrained(
40
- "runwayml/stable-diffusion-v1-5",
41
  controlnet=controlnet,
42
  safety_checker=None,
43
  torch_dtype=torch.float16
 
37
 
38
  >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
39
  >>> pipe = StableDiffusionControlNetReferencePipeline.from_pretrained(
40
+ "stable-diffusion-v1-5/stable-diffusion-v1-5",
41
  controlnet=controlnet,
42
  safety_checker=None,
43
  torch_dtype=torch.float16
main/stable_diffusion_ipex.py CHANGED
@@ -43,7 +43,7 @@ EXAMPLE_DOC_STRING = """
43
  >>> import torch
44
  >>> from diffusers import StableDiffusionPipeline
45
 
46
- >>> pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_ipex")
47
 
48
  >>> # For Float32
49
  >>> pipe.prepare_for_ipex(prompt, dtype=torch.float32, height=512, width=512) #value of image height/width should be consistent with the pipeline inference
@@ -85,7 +85,7 @@ class StableDiffusionIPEXPipeline(
85
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
86
  safety_checker ([`StableDiffusionSafetyChecker`]):
87
  Classification module that estimates whether generated images could be considered offensive or harmful.
88
- Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
89
  feature_extractor ([`CLIPImageProcessor`]):
90
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
91
  """
@@ -161,8 +161,8 @@ class StableDiffusionIPEXPipeline(
161
  "The configuration file of the unet has set the default `sample_size` to smaller than"
162
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
163
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
164
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
165
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
166
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
167
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
168
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
 
43
  >>> import torch
44
  >>> from diffusers import StableDiffusionPipeline
45
 
46
+ >>> pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", custom_pipeline="stable_diffusion_ipex")
47
 
48
  >>> # For Float32
49
  >>> pipe.prepare_for_ipex(prompt, dtype=torch.float32, height=512, width=512) #value of image height/width should be consistent with the pipeline inference
 
85
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
86
  safety_checker ([`StableDiffusionSafetyChecker`]):
87
  Classification module that estimates whether generated images could be considered offensive or harmful.
88
+ Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
89
  feature_extractor ([`CLIPImageProcessor`]):
90
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
91
  """
 
161
  "The configuration file of the unet has set the default `sample_size` to smaller than"
162
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
163
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
164
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
165
+ " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
166
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
167
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
168
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
main/stable_diffusion_mega.py CHANGED
@@ -47,7 +47,7 @@ class StableDiffusionMegaPipeline(DiffusionPipeline, StableDiffusionMixin):
47
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
48
  safety_checker ([`StableDiffusionMegaSafetyChecker`]):
49
  Classification module that estimates whether generated images could be considered offensive or harmful.
50
- Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
51
  feature_extractor ([`CLIPImageProcessor`]):
52
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
53
  """
 
47
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
48
  safety_checker ([`StableDiffusionMegaSafetyChecker`]):
49
  Classification module that estimates whether generated images could be considered offensive or harmful.
50
+ Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
51
  feature_extractor ([`CLIPImageProcessor`]):
52
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
53
  """
main/stable_diffusion_reference.py CHANGED
@@ -46,7 +46,7 @@ EXAMPLE_DOC_STRING = """
46
  >>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")
47
 
48
  >>> pipe = StableDiffusionReferencePipeline.from_pretrained(
49
- "runwayml/stable-diffusion-v1-5",
50
  safety_checker=None,
51
  torch_dtype=torch.float16
52
  ).to('cuda:0')
@@ -112,7 +112,7 @@ class StableDiffusionReferencePipeline(
112
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
113
  safety_checker ([`StableDiffusionSafetyChecker`]):
114
  Classification module that estimates whether generated images could be considered offensive or harmful.
115
- Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
116
  feature_extractor ([`CLIPImageProcessor`]):
117
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
118
  """
@@ -194,8 +194,8 @@ class StableDiffusionReferencePipeline(
194
  "The configuration file of the unet has set the default `sample_size` to smaller than"
195
  " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
196
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
197
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
198
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
199
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
200
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
201
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
 
46
  >>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png")
47
 
48
  >>> pipe = StableDiffusionReferencePipeline.from_pretrained(
49
+ "stable-diffusion-v1-5/stable-diffusion-v1-5",
50
  safety_checker=None,
51
  torch_dtype=torch.float16
52
  ).to('cuda:0')
 
112
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
113
  safety_checker ([`StableDiffusionSafetyChecker`]):
114
  Classification module that estimates whether generated images could be considered offensive or harmful.
115
+ Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
116
  feature_extractor ([`CLIPImageProcessor`]):
117
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
118
  """
 
194
  "The configuration file of the unet has set the default `sample_size` to smaller than"
195
  " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
196
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
197
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
198
+ " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
199
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
200
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
201
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
main/stable_diffusion_repaint.py CHANGED
@@ -167,7 +167,7 @@ class StableDiffusionRepaintPipeline(
167
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
168
  safety_checker ([`StableDiffusionSafetyChecker`]):
169
  Classification module that estimates whether generated images could be considered offensive or harmful.
170
- Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
171
  feature_extractor ([`CLIPImageProcessor`]):
172
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
173
  """
@@ -249,8 +249,8 @@ class StableDiffusionRepaintPipeline(
249
  "The configuration file of the unet has set the default `sample_size` to smaller than"
250
  " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
251
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
252
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
253
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
254
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
255
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
256
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
 
167
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
168
  safety_checker ([`StableDiffusionSafetyChecker`]):
169
  Classification module that estimates whether generated images could be considered offensive or harmful.
170
+ Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
171
  feature_extractor ([`CLIPImageProcessor`]):
172
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
173
  """
 
249
  "The configuration file of the unet has set the default `sample_size` to smaller than"
250
  " 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
251
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
252
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
253
+ " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
254
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
255
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
256
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
main/stable_diffusion_tensorrt_img2img.py CHANGED
@@ -678,7 +678,7 @@ class TensorRTStableDiffusionImg2ImgPipeline(DiffusionPipeline):
678
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
679
  safety_checker ([`StableDiffusionSafetyChecker`]):
680
  Classification module that estimates whether generated images could be considered offensive or harmful.
681
- Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
682
  feature_extractor ([`CLIPImageProcessor`]):
683
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
684
  """
@@ -766,8 +766,8 @@ class TensorRTStableDiffusionImg2ImgPipeline(DiffusionPipeline):
766
  "The configuration file of the unet has set the default `sample_size` to smaller than"
767
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
768
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
769
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
770
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
771
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
772
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
773
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
 
678
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
679
  safety_checker ([`StableDiffusionSafetyChecker`]):
680
  Classification module that estimates whether generated images could be considered offensive or harmful.
681
+ Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
682
  feature_extractor ([`CLIPImageProcessor`]):
683
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
684
  """
 
766
  "The configuration file of the unet has set the default `sample_size` to smaller than"
767
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
768
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
769
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
770
+ " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
771
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
772
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
773
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
main/stable_diffusion_tensorrt_inpaint.py CHANGED
@@ -682,7 +682,7 @@ class TensorRTStableDiffusionInpaintPipeline(DiffusionPipeline):
682
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
683
  safety_checker ([`StableDiffusionSafetyChecker`]):
684
  Classification module that estimates whether generated images could be considered offensive or harmful.
685
- Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
686
  feature_extractor ([`CLIPImageProcessor`]):
687
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
688
  """
@@ -770,8 +770,8 @@ class TensorRTStableDiffusionInpaintPipeline(DiffusionPipeline):
770
  "The configuration file of the unet has set the default `sample_size` to smaller than"
771
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
772
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
773
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
774
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
775
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
776
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
777
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
 
682
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
683
  safety_checker ([`StableDiffusionSafetyChecker`]):
684
  Classification module that estimates whether generated images could be considered offensive or harmful.
685
+ Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
686
  feature_extractor ([`CLIPImageProcessor`]):
687
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
688
  """
 
770
  "The configuration file of the unet has set the default `sample_size` to smaller than"
771
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
772
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
773
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
774
+ " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
775
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
776
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
777
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
main/stable_diffusion_tensorrt_txt2img.py CHANGED
@@ -594,7 +594,7 @@ class TensorRTStableDiffusionPipeline(DiffusionPipeline):
594
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
595
  safety_checker ([`StableDiffusionSafetyChecker`]):
596
  Classification module that estimates whether generated images could be considered offensive or harmful.
597
- Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
598
  feature_extractor ([`CLIPImageProcessor`]):
599
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
600
  """
@@ -682,8 +682,8 @@ class TensorRTStableDiffusionPipeline(DiffusionPipeline):
682
  "The configuration file of the unet has set the default `sample_size` to smaller than"
683
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
684
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
685
- " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
686
- " \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
687
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
688
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
689
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
 
594
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
595
  safety_checker ([`StableDiffusionSafetyChecker`]):
596
  Classification module that estimates whether generated images could be considered offensive or harmful.
597
+ Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
598
  feature_extractor ([`CLIPImageProcessor`]):
599
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
600
  """
 
682
  "The configuration file of the unet has set the default `sample_size` to smaller than"
683
  " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
684
  " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
685
+ " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
686
+ " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
687
  " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
688
  " in the config might lead to incorrect results in future versions. If you have downloaded this"
689
  " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
main/text_inpainting.py CHANGED
@@ -52,7 +52,7 @@ class TextInpainting(DiffusionPipeline, StableDiffusionMixin):
52
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
53
  safety_checker ([`StableDiffusionSafetyChecker`]):
54
  Classification module that estimates whether generated images could be considered offensive or harmful.
55
- Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
56
  feature_extractor ([`CLIPImageProcessor`]):
57
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
58
  """
 
52
  [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
53
  safety_checker ([`StableDiffusionSafetyChecker`]):
54
  Classification module that estimates whether generated images could be considered offensive or harmful.
55
+ Please, refer to the [model card](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5) for details.
56
  feature_extractor ([`CLIPImageProcessor`]):
57
  Model that extracts features from generated images to be used as inputs for the `safety_checker`.
58
  """