diffusers-benchmarking-bot
commited on
Upload folder using huggingface_hub
Browse files- main/matryoshka.py +4 -4
main/matryoshka.py
CHANGED
@@ -868,7 +868,7 @@ class CrossAttnDownBlock2D(nn.Module):
|
|
868 |
blocks = list(zip(self.resnets, self.attentions))
|
869 |
|
870 |
for i, (resnet, attn) in enumerate(blocks):
|
871 |
-
if
|
872 |
|
873 |
def create_custom_forward(module, return_dict=None):
|
874 |
def custom_forward(*inputs):
|
@@ -1029,7 +1029,7 @@ class UNetMidBlock2DCrossAttn(nn.Module):
|
|
1029 |
|
1030 |
hidden_states = self.resnets[0](hidden_states, temb)
|
1031 |
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
1032 |
-
if
|
1033 |
|
1034 |
def create_custom_forward(module, return_dict=None):
|
1035 |
def custom_forward(*inputs):
|
@@ -1191,7 +1191,7 @@ class CrossAttnUpBlock2D(nn.Module):
|
|
1191 |
|
1192 |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1193 |
|
1194 |
-
if
|
1195 |
|
1196 |
def create_custom_forward(module, return_dict=None):
|
1197 |
def custom_forward(*inputs):
|
@@ -1364,7 +1364,7 @@ class MatryoshkaTransformer2DModel(LegacyModelMixin, LegacyConfigMixin):
|
|
1364 |
|
1365 |
# Blocks
|
1366 |
for block in self.transformer_blocks:
|
1367 |
-
if
|
1368 |
|
1369 |
def create_custom_forward(module, return_dict=None):
|
1370 |
def custom_forward(*inputs):
|
|
|
868 |
blocks = list(zip(self.resnets, self.attentions))
|
869 |
|
870 |
for i, (resnet, attn) in enumerate(blocks):
|
871 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
872 |
|
873 |
def create_custom_forward(module, return_dict=None):
|
874 |
def custom_forward(*inputs):
|
|
|
1029 |
|
1030 |
hidden_states = self.resnets[0](hidden_states, temb)
|
1031 |
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
1032 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
1033 |
|
1034 |
def create_custom_forward(module, return_dict=None):
|
1035 |
def custom_forward(*inputs):
|
|
|
1191 |
|
1192 |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1193 |
|
1194 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
1195 |
|
1196 |
def create_custom_forward(module, return_dict=None):
|
1197 |
def custom_forward(*inputs):
|
|
|
1364 |
|
1365 |
# Blocks
|
1366 |
for block in self.transformer_blocks:
|
1367 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
1368 |
|
1369 |
def create_custom_forward(module, return_dict=None):
|
1370 |
def custom_forward(*inputs):
|