Datasets:

ArXiv:
community-pipelines-mirror / v0.22.0 /pipeline_fabric.py
Diffusers Bot
Upload folder using huggingface_hub
fcb9f8b verified
raw
history blame
34.9 kB
# Copyright 2023 FABRIC authors and the HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Union
import torch
from diffuser.utils.torch_utils import randn_tensor
from packaging import version
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers.configuration_utils import FrozenDict
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.attention_processor import LoRAAttnProcessor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.schedulers import EulerAncestralDiscreteScheduler, KarrasDiffusionSchedulers
from diffusers.utils import (
deprecate,
logging,
replace_example_docstring,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> from diffusers import DiffusionPipeline
>>> import torch
>>> model_id = "dreamlike-art/dreamlike-photoreal-2.0"
>>> pipe = DiffusionPipeline(model_id, torch_dtype=torch.float16, custom_pipeline="pipeline_fabric")
>>> pipe = pipe.to("cuda")
>>> prompt = "a giant standing in a fantasy landscape best quality"
>>> liked = [] # list of images for positive feedback
>>> disliked = [] # list of images for negative feedback
>>> image = pipe(prompt, num_images=4, liked=liked, disliked=disliked).images[0]
```
"""
class FabricCrossAttnProcessor:
def __init__(self):
self.attntion_probs = None
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
weights=None,
lora_scale=1.0,
):
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if isinstance(attn.processor, LoRAAttnProcessor):
query = attn.to_q(hidden_states) + lora_scale * attn.processor.to_q_lora(hidden_states)
else:
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
if isinstance(attn.processor, LoRAAttnProcessor):
key = attn.to_k(encoder_hidden_states) + lora_scale * attn.processor.to_k_lora(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states) + lora_scale * attn.processor.to_v_lora(encoder_hidden_states)
else:
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
if weights is not None:
if weights.shape[0] != 1:
weights = weights.repeat_interleave(attn.heads, dim=0)
attention_probs = attention_probs * weights[:, None]
attention_probs = attention_probs / attention_probs.sum(dim=-1, keepdim=True)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
if isinstance(attn.processor, LoRAAttnProcessor):
hidden_states = attn.to_out[0](hidden_states) + lora_scale * attn.processor.to_out_lora(hidden_states)
else:
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
class FabricPipeline(DiffusionPipeline):
r"""
Pipeline for text-to-image generation using Stable Diffusion and conditioning the results using feedback images.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`~transformers.CLIPTextModel`]):
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
tokenizer ([`~transformers.CLIPTokenizer`]):
A `CLIPTokenizer` to tokenize text.
unet ([`UNet2DConditionModel`]):
A `UNet2DConditionModel` to denoise the encoded image latents.
scheduler ([`EulerAncestralDiscreteScheduler`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
about a model's potential harms.
"""
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: KarrasDiffusionSchedulers,
requires_safety_checker: bool = True,
):
super().__init__()
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
unet=unet,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
def _encode_prompt(
self,
prompt,
device,
num_images_per_prompt,
do_classifier_free_guidance,
negative_prompt=None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
lora_scale: Optional[float] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
do_classifier_free_guidance (`bool`):
whether to use classifier free guidance or not
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
lora_scale (`float`, *optional*):
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
"""
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, LoraLoaderMixin):
self._lora_scale = lora_scale
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
)
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
prompt_embeds = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
prompt_embeds = prompt_embeds[0]
if self.text_encoder is not None:
prompt_embeds_dtype = self.text_encoder.dtype
elif self.unet is not None:
prompt_embeds_dtype = self.unet.dtype
else:
prompt_embeds_dtype = prompt_embeds.dtype
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
bs_embed, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance and negative_prompt_embeds is None:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
# textual inversion: procecss multi-vector tokens if necessary
if isinstance(self, TextualInversionLoaderMixin):
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
max_length = prompt_embeds.shape[1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
negative_prompt_embeds = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
negative_prompt_embeds = negative_prompt_embeds[0]
if do_classifier_free_guidance:
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = negative_prompt_embeds.shape[1]
negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
return prompt_embeds
def get_unet_hidden_states(self, z_all, t, prompt_embd):
cached_hidden_states = []
for module in self.unet.modules():
if isinstance(module, BasicTransformerBlock):
def new_forward(self, hidden_states, *args, **kwargs):
cached_hidden_states.append(hidden_states.clone().detach().cpu())
return self.old_forward(hidden_states, *args, **kwargs)
module.attn1.old_forward = module.attn1.forward
module.attn1.forward = new_forward.__get__(module.attn1)
# run forward pass to cache hidden states, output can be discarded
_ = self.unet(z_all, t, encoder_hidden_states=prompt_embd)
# restore original forward pass
for module in self.unet.modules():
if isinstance(module, BasicTransformerBlock):
module.attn1.forward = module.attn1.old_forward
del module.attn1.old_forward
return cached_hidden_states
def unet_forward_with_cached_hidden_states(
self,
z_all,
t,
prompt_embd,
cached_pos_hiddens: Optional[List[torch.Tensor]] = None,
cached_neg_hiddens: Optional[List[torch.Tensor]] = None,
pos_weights=(0.8, 0.8),
neg_weights=(0.5, 0.5),
):
if cached_pos_hiddens is None and cached_neg_hiddens is None:
return self.unet(z_all, t, encoder_hidden_states=prompt_embd)
local_pos_weights = torch.linspace(*pos_weights, steps=len(self.unet.down_blocks) + 1)[:-1].tolist()
local_neg_weights = torch.linspace(*neg_weights, steps=len(self.unet.down_blocks) + 1)[:-1].tolist()
for block, pos_weight, neg_weight in zip(
self.unet.down_blocks + [self.unet.mid_block] + self.unet.up_blocks,
local_pos_weights + [pos_weights[1]] + local_pos_weights[::-1],
local_neg_weights + [neg_weights[1]] + local_neg_weights[::-1],
):
for module in block.modules():
if isinstance(module, BasicTransformerBlock):
def new_forward(
self,
hidden_states,
pos_weight=pos_weight,
neg_weight=neg_weight,
**kwargs,
):
cond_hiddens, uncond_hiddens = hidden_states.chunk(2, dim=0)
batch_size, d_model = cond_hiddens.shape[:2]
device, dtype = hidden_states.device, hidden_states.dtype
weights = torch.ones(batch_size, d_model, device=device, dtype=dtype)
out_pos = self.old_forward(hidden_states)
out_neg = self.old_forward(hidden_states)
if cached_pos_hiddens is not None:
cached_pos_hs = cached_pos_hiddens.pop(0).to(hidden_states.device)
cond_pos_hs = torch.cat([cond_hiddens, cached_pos_hs], dim=1)
pos_weights = weights.clone().repeat(1, 1 + cached_pos_hs.shape[1] // d_model)
pos_weights[:, d_model:] = pos_weight
attn_with_weights = FabricCrossAttnProcessor()
out_pos = attn_with_weights(
self,
cond_hiddens,
encoder_hidden_states=cond_pos_hs,
weights=pos_weights,
)
else:
out_pos = self.old_forward(cond_hiddens)
if cached_neg_hiddens is not None:
cached_neg_hs = cached_neg_hiddens.pop(0).to(hidden_states.device)
uncond_neg_hs = torch.cat([uncond_hiddens, cached_neg_hs], dim=1)
neg_weights = weights.clone().repeat(1, 1 + cached_neg_hs.shape[1] // d_model)
neg_weights[:, d_model:] = neg_weight
attn_with_weights = FabricCrossAttnProcessor()
out_neg = attn_with_weights(
self,
uncond_hiddens,
encoder_hidden_states=uncond_neg_hs,
weights=neg_weights,
)
else:
out_neg = self.old_forward(uncond_hiddens)
out = torch.cat([out_pos, out_neg], dim=0)
return out
module.attn1.old_forward = module.attn1.forward
module.attn1.forward = new_forward.__get__(module.attn1)
out = self.unet(z_all, t, encoder_hidden_states=prompt_embd)
# restore original forward pass
for module in self.unet.modules():
if isinstance(module, BasicTransformerBlock):
module.attn1.forward = module.attn1.old_forward
del module.attn1.old_forward
return out
def preprocess_feedback_images(self, images, vae, dim, device, dtype, generator) -> torch.tensor:
images_t = [self.image_to_tensor(img, dim, dtype) for img in images]
images_t = torch.stack(images_t).to(device)
latents = vae.config.scaling_factor * vae.encode(images_t).latent_dist.sample(generator)
return torch.cat([latents], dim=0)
def check_inputs(
self,
prompt,
negative_prompt=None,
liked=None,
disliked=None,
height=None,
width=None,
):
if prompt is None:
raise ValueError("Provide `prompt`. Cannot leave both `prompt` undefined.")
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if negative_prompt is not None and (
not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list)
):
raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")
if liked is not None and not isinstance(liked, list):
raise ValueError(f"`liked` has to be of type `list` but is {type(liked)}")
if disliked is not None and not isinstance(disliked, list):
raise ValueError(f"`disliked` has to be of type `list` but is {type(disliked)}")
if height is not None and not isinstance(height, int):
raise ValueError(f"`height` has to be of type `int` but is {type(height)}")
if width is not None and not isinstance(width, int):
raise ValueError(f"`width` has to be of type `int` but is {type(width)}")
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Optional[Union[str, List[str]]] = "",
negative_prompt: Optional[Union[str, List[str]]] = "lowres, bad anatomy, bad hands, cropped, worst quality",
liked: Optional[Union[List[str], List[Image.Image]]] = [],
disliked: Optional[Union[List[str], List[Image.Image]]] = [],
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
height: int = 512,
width: int = 512,
return_dict: bool = True,
num_images: int = 4,
guidance_scale: float = 7.0,
num_inference_steps: int = 20,
output_type: Optional[str] = "pil",
feedback_start_ratio: float = 0.33,
feedback_end_ratio: float = 0.66,
min_weight: float = 0.05,
max_weight: float = 0.8,
neg_scale: float = 0.5,
pos_bottleneck_scale: float = 1.0,
neg_bottleneck_scale: float = 1.0,
latents: Optional[torch.FloatTensor] = None,
):
r"""
The call function to the pipeline for generation. Generate a trajectory of images with binary feedback. The
feedback can be given as a list of liked and disliked images.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`
instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
liked (`List[Image.Image]` or `List[str]`, *optional*):
Encourages images with liked features.
disliked (`List[Image.Image]` or `List[str]`, *optional*):
Discourages images with disliked features.
generator (`torch.Generator` or `List[torch.Generator]` or `int`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) or an `int` to
make generation deterministic.
height (`int`, *optional*, defaults to 512):
Height of the generated image.
width (`int`, *optional*, defaults to 512):
Width of the generated image.
num_images (`int`, *optional*, defaults to 4):
The number of images to generate per prompt.
guidance_scale (`float`, *optional*, defaults to 7.0):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
num_inference_steps (`int`, *optional*, defaults to 20):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
feedback_start_ratio (`float`, *optional*, defaults to `.33`):
Start point for providing feedback (between 0 and 1).
feedback_end_ratio (`float`, *optional*, defaults to `.66`):
End point for providing feedback (between 0 and 1).
min_weight (`float`, *optional*, defaults to `.05`):
Minimum weight for feedback.
max_weight (`float`, *optional*, defults tp `1.0`):
Maximum weight for feedback.
neg_scale (`float`, *optional*, defaults to `.5`):
Scale factor for negative feedback.
Examples:
Returns:
[`~pipelines.fabric.FabricPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images and the
second element is a list of `bool`s indicating whether the corresponding generated image contains
"not-safe-for-work" (nsfw) content.
"""
self.check_inputs(prompt, negative_prompt, liked, disliked)
device = self._execution_device
dtype = self.unet.dtype
if isinstance(prompt, str) and prompt is not None:
batch_size = 1
elif isinstance(prompt, list) and prompt is not None:
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
if isinstance(negative_prompt, str):
negative_prompt = negative_prompt
elif isinstance(negative_prompt, list):
negative_prompt = negative_prompt
else:
assert len(negative_prompt) == batch_size
shape = (
batch_size * num_images,
self.unet.config.in_channels,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
latent_noise = randn_tensor(
shape,
device=device,
dtype=dtype,
generator=generator,
)
positive_latents = (
self.preprocess_feedback_images(liked, self.vae, (height, width), device, dtype, generator)
if liked and len(liked) > 0
else torch.tensor(
[],
device=device,
dtype=dtype,
)
)
negative_latents = (
self.preprocess_feedback_images(disliked, self.vae, (height, width), device, dtype, generator)
if disliked and len(disliked) > 0
else torch.tensor(
[],
device=device,
dtype=dtype,
)
)
do_classifier_free_guidance = guidance_scale > 0.1
(prompt_neg_embs, prompt_pos_embs) = self._encode_prompt(
prompt,
device,
num_images,
do_classifier_free_guidance,
negative_prompt,
).split([num_images * batch_size, num_images * batch_size])
batched_prompt_embd = torch.cat([prompt_pos_embs, prompt_neg_embs], dim=0)
null_tokens = self.tokenizer(
[""],
return_tensors="pt",
max_length=self.tokenizer.model_max_length,
padding="max_length",
truncation=True,
)
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
attention_mask = null_tokens.attention_mask.to(device)
else:
attention_mask = None
null_prompt_emb = self.text_encoder(
input_ids=null_tokens.input_ids.to(device),
attention_mask=attention_mask,
).last_hidden_state
null_prompt_emb = null_prompt_emb.to(device=device, dtype=dtype)
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
latent_noise = latent_noise * self.scheduler.init_noise_sigma
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
ref_start_idx = round(len(timesteps) * feedback_start_ratio)
ref_end_idx = round(len(timesteps) * feedback_end_ratio)
with self.progress_bar(total=num_inference_steps) as pbar:
for i, t in enumerate(timesteps):
sigma = self.scheduler.sigma_t[t] if hasattr(self.scheduler, "sigma_t") else 0
if hasattr(self.scheduler, "sigmas"):
sigma = self.scheduler.sigmas[i]
alpha_hat = 1 / (sigma**2 + 1)
z_single = self.scheduler.scale_model_input(latent_noise, t)
z_all = torch.cat([z_single] * 2, dim=0)
z_ref = torch.cat([positive_latents, negative_latents], dim=0)
if i >= ref_start_idx and i <= ref_end_idx:
weight_factor = max_weight
else:
weight_factor = min_weight
pos_ws = (weight_factor, weight_factor * pos_bottleneck_scale)
neg_ws = (weight_factor * neg_scale, weight_factor * neg_scale * neg_bottleneck_scale)
if z_ref.size(0) > 0 and weight_factor > 0:
noise = torch.randn_like(z_ref)
if isinstance(self.scheduler, EulerAncestralDiscreteScheduler):
z_ref_noised = (alpha_hat**0.5 * z_ref + (1 - alpha_hat) ** 0.5 * noise).type(dtype)
else:
z_ref_noised = self.scheduler.add_noise(z_ref, noise, t)
ref_prompt_embd = torch.cat(
[null_prompt_emb] * (len(positive_latents) + len(negative_latents)), dim=0
)
cached_hidden_states = self.get_unet_hidden_states(z_ref_noised, t, ref_prompt_embd)
n_pos, n_neg = positive_latents.shape[0], negative_latents.shape[0]
cached_pos_hs, cached_neg_hs = [], []
for hs in cached_hidden_states:
cached_pos, cached_neg = hs.split([n_pos, n_neg], dim=0)
cached_pos = cached_pos.view(1, -1, *cached_pos.shape[2:]).expand(num_images, -1, -1)
cached_neg = cached_neg.view(1, -1, *cached_neg.shape[2:]).expand(num_images, -1, -1)
cached_pos_hs.append(cached_pos)
cached_neg_hs.append(cached_neg)
if n_pos == 0:
cached_pos_hs = None
if n_neg == 0:
cached_neg_hs = None
else:
cached_pos_hs, cached_neg_hs = None, None
unet_out = self.unet_forward_with_cached_hidden_states(
z_all,
t,
prompt_embd=batched_prompt_embd,
cached_pos_hiddens=cached_pos_hs,
cached_neg_hiddens=cached_neg_hs,
pos_weights=pos_ws,
neg_weights=neg_ws,
)[0]
noise_cond, noise_uncond = unet_out.chunk(2)
guidance = noise_cond - noise_uncond
noise_pred = noise_uncond + guidance_scale * guidance
latent_noise = self.scheduler.step(noise_pred, t, latent_noise)[0]
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
pbar.update()
y = self.vae.decode(latent_noise / self.vae.config.scaling_factor, return_dict=False)[0]
imgs = self.image_processor.postprocess(
y,
output_type=output_type,
)
if not return_dict:
return imgs
return StableDiffusionPipelineOutput(imgs, False)
def image_to_tensor(self, image: Union[str, Image.Image], dim: tuple, dtype):
"""
Convert latent PIL image to a torch tensor for further processing.
"""
if isinstance(image, str):
image = Image.open(image)
if not image.mode == "RGB":
image = image.convert("RGB")
image = self.image_processor.preprocess(image, height=dim[0], width=dim[1])[0]
return image.type(dtype)