|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import PIL.Image |
|
import torch |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
DiffusionPipeline, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
StableDiffusionImg2ImgPipeline, |
|
StableDiffusionInpaintPipelineLegacy, |
|
StableDiffusionPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.configuration_utils import FrozenDict |
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker |
|
from diffusers.utils import deprecate, logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class StableDiffusionMegaPipeline(DiffusionPipeline): |
|
r""" |
|
Pipeline for text-to-image generation using Stable Diffusion. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionMegaSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. |
|
feature_extractor ([`CLIPImageProcessor`]): |
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`. |
|
""" |
|
_optional_components = ["safety_checker", "feature_extractor"] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__() |
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" |
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " |
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" |
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," |
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" |
|
" file" |
|
) |
|
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["steps_offset"] = 1 |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
@property |
|
def components(self) -> Dict[str, Any]: |
|
return {k: getattr(self, k) for k in self.config.keys() if not k.startswith("_")} |
|
|
|
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): |
|
r""" |
|
Enable sliced attention computation. |
|
|
|
When this option is enabled, the attention module will split the input tensor in slices, to compute attention |
|
in several steps. This is useful to save some memory in exchange for a small speed decrease. |
|
|
|
Args: |
|
slice_size (`str` or `int`, *optional*, defaults to `"auto"`): |
|
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If |
|
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case, |
|
`attention_head_dim` must be a multiple of `slice_size`. |
|
""" |
|
if slice_size == "auto": |
|
|
|
|
|
slice_size = self.unet.config.attention_head_dim // 2 |
|
self.unet.set_attention_slice(slice_size) |
|
|
|
def disable_attention_slicing(self): |
|
r""" |
|
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go |
|
back to computing attention in one step. |
|
""" |
|
|
|
self.enable_attention_slicing(None) |
|
|
|
@torch.no_grad() |
|
def inpaint( |
|
self, |
|
prompt: Union[str, List[str]], |
|
image: Union[torch.FloatTensor, PIL.Image.Image], |
|
mask_image: Union[torch.FloatTensor, PIL.Image.Image], |
|
strength: float = 0.8, |
|
num_inference_steps: Optional[int] = 50, |
|
guidance_scale: Optional[float] = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: Optional[float] = 0.0, |
|
generator: Optional[torch.Generator] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
): |
|
|
|
return StableDiffusionInpaintPipelineLegacy(**self.components)( |
|
prompt=prompt, |
|
image=image, |
|
mask_image=mask_image, |
|
strength=strength, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
) |
|
|
|
@torch.no_grad() |
|
def img2img( |
|
self, |
|
prompt: Union[str, List[str]], |
|
image: Union[torch.FloatTensor, PIL.Image.Image], |
|
strength: float = 0.8, |
|
num_inference_steps: Optional[int] = 50, |
|
guidance_scale: Optional[float] = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: Optional[float] = 0.0, |
|
generator: Optional[torch.Generator] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
**kwargs, |
|
): |
|
|
|
return StableDiffusionImg2ImgPipeline(**self.components)( |
|
prompt=prompt, |
|
image=image, |
|
strength=strength, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
callback_steps=callback_steps, |
|
) |
|
|
|
@torch.no_grad() |
|
def text2img( |
|
self, |
|
prompt: Union[str, List[str]], |
|
height: int = 512, |
|
width: int = 512, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[torch.Generator] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
): |
|
|
|
return StableDiffusionPipeline(**self.components)( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
callback=callback, |
|
callback_steps=callback_steps, |
|
) |
|
|