|
import types |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
from transformers import CLIPTextModelWithProjection, CLIPTokenizer |
|
from transformers.models.clip.modeling_clip import CLIPTextModelOutput |
|
|
|
from diffusers.models import PriorTransformer |
|
from diffusers.pipelines import DiffusionPipeline, StableDiffusionImageVariationPipeline |
|
from diffusers.schedulers import UnCLIPScheduler |
|
from diffusers.utils import logging, randn_tensor |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): |
|
image = image.to(device=device) |
|
image_embeddings = image |
|
image_embeddings = image_embeddings.unsqueeze(1) |
|
|
|
|
|
bs_embed, seq_len, _ = image_embeddings.shape |
|
image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) |
|
image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
if do_classifier_free_guidance: |
|
uncond_embeddings = torch.zeros_like(image_embeddings) |
|
|
|
|
|
|
|
|
|
image_embeddings = torch.cat([uncond_embeddings, image_embeddings]) |
|
|
|
return image_embeddings |
|
|
|
|
|
class StableUnCLIPPipeline(DiffusionPipeline): |
|
def __init__( |
|
self, |
|
prior: PriorTransformer, |
|
tokenizer: CLIPTokenizer, |
|
text_encoder: CLIPTextModelWithProjection, |
|
prior_scheduler: UnCLIPScheduler, |
|
decoder_pipe_kwargs: Optional[dict] = None, |
|
): |
|
super().__init__() |
|
|
|
decoder_pipe_kwargs = dict(image_encoder=None) if decoder_pipe_kwargs is None else decoder_pipe_kwargs |
|
|
|
decoder_pipe_kwargs["torch_dtype"] = decoder_pipe_kwargs.get("torch_dtype", None) or prior.dtype |
|
|
|
self.decoder_pipe = StableDiffusionImageVariationPipeline.from_pretrained( |
|
"lambdalabs/sd-image-variations-diffusers", **decoder_pipe_kwargs |
|
) |
|
|
|
|
|
self.decoder_pipe._encode_image = types.MethodType(_encode_image, self.decoder_pipe) |
|
|
|
self.register_modules( |
|
prior=prior, |
|
tokenizer=tokenizer, |
|
text_encoder=text_encoder, |
|
prior_scheduler=prior_scheduler, |
|
) |
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None, |
|
text_attention_mask: Optional[torch.Tensor] = None, |
|
): |
|
if text_model_output is None: |
|
batch_size = len(prompt) if isinstance(prompt, list) else 1 |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
text_mask = text_inputs.attention_mask.bool().to(device) |
|
|
|
if text_input_ids.shape[-1] > self.tokenizer.model_max_length: |
|
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] |
|
|
|
text_encoder_output = self.text_encoder(text_input_ids.to(device)) |
|
|
|
text_embeddings = text_encoder_output.text_embeds |
|
text_encoder_hidden_states = text_encoder_output.last_hidden_state |
|
|
|
else: |
|
batch_size = text_model_output[0].shape[0] |
|
text_embeddings, text_encoder_hidden_states = text_model_output[0], text_model_output[1] |
|
text_mask = text_attention_mask |
|
|
|
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0) |
|
text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
if do_classifier_free_guidance: |
|
uncond_tokens = [""] * batch_size |
|
|
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
uncond_text_mask = uncond_input.attention_mask.bool().to(device) |
|
uncond_embeddings_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) |
|
|
|
uncond_embeddings = uncond_embeddings_text_encoder_output.text_embeds |
|
uncond_text_encoder_hidden_states = uncond_embeddings_text_encoder_output.last_hidden_state |
|
|
|
|
|
|
|
seq_len = uncond_embeddings.shape[1] |
|
uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt) |
|
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len) |
|
|
|
seq_len = uncond_text_encoder_hidden_states.shape[1] |
|
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) |
|
uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( |
|
batch_size * num_images_per_prompt, seq_len, -1 |
|
) |
|
uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
|
text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) |
|
|
|
text_mask = torch.cat([uncond_text_mask, text_mask]) |
|
|
|
return text_embeddings, text_encoder_hidden_states, text_mask |
|
|
|
@property |
|
def _execution_device(self): |
|
r""" |
|
Returns the device on which the pipeline's models will be executed. After calling |
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module |
|
hooks. |
|
""" |
|
if self.device != torch.device("meta") or not hasattr(self.prior, "_hf_hook"): |
|
return self.device |
|
for module in self.prior.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): |
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
if latents.shape != shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") |
|
latents = latents.to(device) |
|
|
|
latents = latents * scheduler.init_noise_sigma |
|
return latents |
|
|
|
def to(self, torch_device: Optional[Union[str, torch.device]] = None): |
|
self.decoder_pipe.to(torch_device) |
|
super().to(torch_device) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Optional[Union[str, List[str]]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_images_per_prompt: int = 1, |
|
prior_num_inference_steps: int = 25, |
|
generator: Optional[torch.Generator] = None, |
|
prior_latents: Optional[torch.FloatTensor] = None, |
|
text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None, |
|
text_attention_mask: Optional[torch.Tensor] = None, |
|
prior_guidance_scale: float = 4.0, |
|
decoder_guidance_scale: float = 8.0, |
|
decoder_num_inference_steps: int = 50, |
|
decoder_num_images_per_prompt: Optional[int] = 1, |
|
decoder_eta: float = 0.0, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
): |
|
if prompt is not None: |
|
if isinstance(prompt, str): |
|
batch_size = 1 |
|
elif isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
else: |
|
batch_size = text_model_output[0].shape[0] |
|
|
|
device = self._execution_device |
|
|
|
batch_size = batch_size * num_images_per_prompt |
|
|
|
do_classifier_free_guidance = prior_guidance_scale > 1.0 or decoder_guidance_scale > 1.0 |
|
|
|
text_embeddings, text_encoder_hidden_states, text_mask = self._encode_prompt( |
|
prompt, device, num_images_per_prompt, do_classifier_free_guidance, text_model_output, text_attention_mask |
|
) |
|
|
|
|
|
|
|
self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device) |
|
prior_timesteps_tensor = self.prior_scheduler.timesteps |
|
|
|
embedding_dim = self.prior.config.embedding_dim |
|
|
|
prior_latents = self.prepare_latents( |
|
(batch_size, embedding_dim), |
|
text_embeddings.dtype, |
|
device, |
|
generator, |
|
prior_latents, |
|
self.prior_scheduler, |
|
) |
|
|
|
for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)): |
|
|
|
latent_model_input = torch.cat([prior_latents] * 2) if do_classifier_free_guidance else prior_latents |
|
|
|
predicted_image_embedding = self.prior( |
|
latent_model_input, |
|
timestep=t, |
|
proj_embedding=text_embeddings, |
|
encoder_hidden_states=text_encoder_hidden_states, |
|
attention_mask=text_mask, |
|
).predicted_image_embedding |
|
|
|
if do_classifier_free_guidance: |
|
predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2) |
|
predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * ( |
|
predicted_image_embedding_text - predicted_image_embedding_uncond |
|
) |
|
|
|
if i + 1 == prior_timesteps_tensor.shape[0]: |
|
prev_timestep = None |
|
else: |
|
prev_timestep = prior_timesteps_tensor[i + 1] |
|
|
|
prior_latents = self.prior_scheduler.step( |
|
predicted_image_embedding, |
|
timestep=t, |
|
sample=prior_latents, |
|
generator=generator, |
|
prev_timestep=prev_timestep, |
|
).prev_sample |
|
|
|
prior_latents = self.prior.post_process_latents(prior_latents) |
|
|
|
image_embeddings = prior_latents |
|
|
|
output = self.decoder_pipe( |
|
image=image_embeddings, |
|
height=height, |
|
width=width, |
|
num_inference_steps=decoder_num_inference_steps, |
|
guidance_scale=decoder_guidance_scale, |
|
generator=generator, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
num_images_per_prompt=decoder_num_images_per_prompt, |
|
eta=decoder_eta, |
|
) |
|
return output |
|
|