|
from typing import Union |
|
|
|
import torch |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
DiffusionPipeline, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
UNet2DConditionModel, |
|
) |
|
from PIL import Image |
|
from torchvision import transforms as tfms |
|
from tqdm.auto import tqdm |
|
from transformers import CLIPTextModel, CLIPTokenizer |
|
|
|
|
|
class MagicMixPipeline(DiffusionPipeline): |
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler], |
|
): |
|
super().__init__() |
|
|
|
self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler) |
|
|
|
|
|
def encode(self, img): |
|
with torch.no_grad(): |
|
latent = self.vae.encode(tfms.ToTensor()(img).unsqueeze(0).to(self.device) * 2 - 1) |
|
latent = 0.18215 * latent.latent_dist.sample() |
|
return latent |
|
|
|
|
|
def decode(self, latent): |
|
latent = (1 / 0.18215) * latent |
|
with torch.no_grad(): |
|
img = self.vae.decode(latent).sample |
|
img = (img / 2 + 0.5).clamp(0, 1) |
|
img = img.detach().cpu().permute(0, 2, 3, 1).numpy() |
|
img = (img * 255).round().astype("uint8") |
|
return Image.fromarray(img[0]) |
|
|
|
|
|
def prep_text(self, prompt): |
|
text_input = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
text_embedding = self.text_encoder(text_input.input_ids.to(self.device))[0] |
|
|
|
uncond_input = self.tokenizer( |
|
"", |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
uncond_embedding = self.text_encoder(uncond_input.input_ids.to(self.device))[0] |
|
|
|
return torch.cat([uncond_embedding, text_embedding]) |
|
|
|
def __call__( |
|
self, |
|
img: Image.Image, |
|
prompt: str, |
|
kmin: float = 0.3, |
|
kmax: float = 0.6, |
|
mix_factor: float = 0.5, |
|
seed: int = 42, |
|
steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
) -> Image.Image: |
|
tmin = steps - int(kmin * steps) |
|
tmax = steps - int(kmax * steps) |
|
|
|
text_embeddings = self.prep_text(prompt) |
|
|
|
self.scheduler.set_timesteps(steps) |
|
|
|
width, height = img.size |
|
encoded = self.encode(img) |
|
|
|
torch.manual_seed(seed) |
|
noise = torch.randn( |
|
(1, self.unet.in_channels, height // 8, width // 8), |
|
).to(self.device) |
|
|
|
latents = self.scheduler.add_noise( |
|
encoded, |
|
noise, |
|
timesteps=self.scheduler.timesteps[tmax], |
|
) |
|
|
|
input = torch.cat([latents] * 2) |
|
|
|
input = self.scheduler.scale_model_input(input, self.scheduler.timesteps[tmax]) |
|
|
|
with torch.no_grad(): |
|
pred = self.unet( |
|
input, |
|
self.scheduler.timesteps[tmax], |
|
encoder_hidden_states=text_embeddings, |
|
).sample |
|
|
|
pred_uncond, pred_text = pred.chunk(2) |
|
pred = pred_uncond + guidance_scale * (pred_text - pred_uncond) |
|
|
|
latents = self.scheduler.step(pred, self.scheduler.timesteps[tmax], latents).prev_sample |
|
|
|
for i, t in enumerate(tqdm(self.scheduler.timesteps)): |
|
if i > tmax: |
|
if i < tmin: |
|
orig_latents = self.scheduler.add_noise( |
|
encoded, |
|
noise, |
|
timesteps=t, |
|
) |
|
|
|
input = (mix_factor * latents) + ( |
|
1 - mix_factor |
|
) * orig_latents |
|
input = torch.cat([input] * 2) |
|
|
|
else: |
|
input = torch.cat([latents] * 2) |
|
|
|
input = self.scheduler.scale_model_input(input, t) |
|
|
|
with torch.no_grad(): |
|
pred = self.unet( |
|
input, |
|
t, |
|
encoder_hidden_states=text_embeddings, |
|
).sample |
|
|
|
pred_uncond, pred_text = pred.chunk(2) |
|
pred = pred_uncond + guidance_scale * (pred_text - pred_uncond) |
|
|
|
latents = self.scheduler.step(pred, t, latents).prev_sample |
|
|
|
return self.decode(latents) |
|
|