|
import inspect |
|
from typing import List, Optional, Union |
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
DiffusionPipeline, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput |
|
from torchvision import transforms |
|
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer |
|
|
|
|
|
class MakeCutouts(nn.Module): |
|
def __init__(self, cut_size, cut_power=1.0): |
|
super().__init__() |
|
|
|
self.cut_size = cut_size |
|
self.cut_power = cut_power |
|
|
|
def forward(self, pixel_values, num_cutouts): |
|
sideY, sideX = pixel_values.shape[2:4] |
|
max_size = min(sideX, sideY) |
|
min_size = min(sideX, sideY, self.cut_size) |
|
cutouts = [] |
|
for _ in range(num_cutouts): |
|
size = int(torch.rand([]) ** self.cut_power * (max_size - min_size) + min_size) |
|
offsetx = torch.randint(0, sideX - size + 1, ()) |
|
offsety = torch.randint(0, sideY - size + 1, ()) |
|
cutout = pixel_values[:, :, offsety : offsety + size, offsetx : offsetx + size] |
|
cutouts.append(F.adaptive_avg_pool2d(cutout, self.cut_size)) |
|
return torch.cat(cutouts) |
|
|
|
|
|
def spherical_dist_loss(x, y): |
|
x = F.normalize(x, dim=-1) |
|
y = F.normalize(y, dim=-1) |
|
return (x - y).norm(dim=-1).div(2).arcsin().pow(2).mul(2) |
|
|
|
|
|
def set_requires_grad(model, value): |
|
for param in model.parameters(): |
|
param.requires_grad = value |
|
|
|
|
|
class CLIPGuidedStableDiffusion(DiffusionPipeline): |
|
"""CLIP guided stable diffusion based on the amazing repo by @crowsonkb and @Jack000 |
|
- https://github.com/Jack000/glid-3-xl |
|
- https://github.dev/crowsonkb/k-diffusion |
|
""" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
clip_model: CLIPModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler], |
|
feature_extractor: CLIPFeatureExtractor, |
|
): |
|
super().__init__() |
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
clip_model=clip_model, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
feature_extractor=feature_extractor, |
|
) |
|
|
|
self.normalize = transforms.Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) |
|
cut_out_size = ( |
|
feature_extractor.size |
|
if isinstance(feature_extractor.size, int) |
|
else feature_extractor.size["shortest_edge"] |
|
) |
|
self.make_cutouts = MakeCutouts(cut_out_size) |
|
|
|
set_requires_grad(self.text_encoder, False) |
|
set_requires_grad(self.clip_model, False) |
|
|
|
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): |
|
if slice_size == "auto": |
|
|
|
|
|
slice_size = self.unet.config.attention_head_dim // 2 |
|
self.unet.set_attention_slice(slice_size) |
|
|
|
def disable_attention_slicing(self): |
|
self.enable_attention_slicing(None) |
|
|
|
def freeze_vae(self): |
|
set_requires_grad(self.vae, False) |
|
|
|
def unfreeze_vae(self): |
|
set_requires_grad(self.vae, True) |
|
|
|
def freeze_unet(self): |
|
set_requires_grad(self.unet, False) |
|
|
|
def unfreeze_unet(self): |
|
set_requires_grad(self.unet, True) |
|
|
|
@torch.enable_grad() |
|
def cond_fn( |
|
self, |
|
latents, |
|
timestep, |
|
index, |
|
text_embeddings, |
|
noise_pred_original, |
|
text_embeddings_clip, |
|
clip_guidance_scale, |
|
num_cutouts, |
|
use_cutouts=True, |
|
): |
|
latents = latents.detach().requires_grad_() |
|
|
|
if isinstance(self.scheduler, LMSDiscreteScheduler): |
|
sigma = self.scheduler.sigmas[index] |
|
|
|
latent_model_input = latents / ((sigma**2 + 1) ** 0.5) |
|
else: |
|
latent_model_input = latents |
|
|
|
|
|
noise_pred = self.unet(latent_model_input, timestep, encoder_hidden_states=text_embeddings).sample |
|
|
|
if isinstance(self.scheduler, (PNDMScheduler, DDIMScheduler)): |
|
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] |
|
beta_prod_t = 1 - alpha_prod_t |
|
|
|
|
|
pred_original_sample = (latents - beta_prod_t ** (0.5) * noise_pred) / alpha_prod_t ** (0.5) |
|
|
|
fac = torch.sqrt(beta_prod_t) |
|
sample = pred_original_sample * (fac) + latents * (1 - fac) |
|
elif isinstance(self.scheduler, LMSDiscreteScheduler): |
|
sigma = self.scheduler.sigmas[index] |
|
sample = latents - sigma * noise_pred |
|
else: |
|
raise ValueError(f"scheduler type {type(self.scheduler)} not supported") |
|
|
|
sample = 1 / 0.18215 * sample |
|
image = self.vae.decode(sample).sample |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
if use_cutouts: |
|
image = self.make_cutouts(image, num_cutouts) |
|
else: |
|
image = transforms.Resize(self.feature_extractor.size)(image) |
|
image = self.normalize(image).to(latents.dtype) |
|
|
|
image_embeddings_clip = self.clip_model.get_image_features(image) |
|
image_embeddings_clip = image_embeddings_clip / image_embeddings_clip.norm(p=2, dim=-1, keepdim=True) |
|
|
|
if use_cutouts: |
|
dists = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip) |
|
dists = dists.view([num_cutouts, sample.shape[0], -1]) |
|
loss = dists.sum(2).mean(0).sum() * clip_guidance_scale |
|
else: |
|
loss = spherical_dist_loss(image_embeddings_clip, text_embeddings_clip).mean() * clip_guidance_scale |
|
|
|
grads = -torch.autograd.grad(loss, latents)[0] |
|
|
|
if isinstance(self.scheduler, LMSDiscreteScheduler): |
|
latents = latents.detach() + grads * (sigma**2) |
|
noise_pred = noise_pred_original |
|
else: |
|
noise_pred = noise_pred_original - torch.sqrt(beta_prod_t) * grads |
|
return noise_pred, latents |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]], |
|
height: Optional[int] = 512, |
|
width: Optional[int] = 512, |
|
num_inference_steps: Optional[int] = 50, |
|
guidance_scale: Optional[float] = 7.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
clip_guidance_scale: Optional[float] = 100, |
|
clip_prompt: Optional[Union[str, List[str]]] = None, |
|
num_cutouts: Optional[int] = 4, |
|
use_cutouts: Optional[bool] = True, |
|
generator: Optional[torch.Generator] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
): |
|
if isinstance(prompt, str): |
|
batch_size = 1 |
|
elif isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
|
|
text_input = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0] |
|
|
|
text_embeddings = text_embeddings.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
if clip_guidance_scale > 0: |
|
if clip_prompt is not None: |
|
clip_text_input = self.tokenizer( |
|
clip_prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
).input_ids.to(self.device) |
|
else: |
|
clip_text_input = text_input.input_ids.to(self.device) |
|
text_embeddings_clip = self.clip_model.get_text_features(clip_text_input) |
|
text_embeddings_clip = text_embeddings_clip / text_embeddings_clip.norm(p=2, dim=-1, keepdim=True) |
|
|
|
text_embeddings_clip = text_embeddings_clip.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
if do_classifier_free_guidance: |
|
max_length = text_input.input_ids.shape[-1] |
|
uncond_input = self.tokenizer([""], padding="max_length", max_length=max_length, return_tensors="pt") |
|
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] |
|
|
|
uncond_embeddings = uncond_embeddings.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
|
|
|
|
|
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
latents_shape = (batch_size * num_images_per_prompt, self.unet.in_channels, height // 8, width // 8) |
|
latents_dtype = text_embeddings.dtype |
|
if latents is None: |
|
if self.device.type == "mps": |
|
|
|
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to( |
|
self.device |
|
) |
|
else: |
|
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype) |
|
else: |
|
if latents.shape != latents_shape: |
|
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") |
|
latents = latents.to(self.device) |
|
|
|
|
|
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) |
|
extra_set_kwargs = {} |
|
if accepts_offset: |
|
extra_set_kwargs["offset"] = 1 |
|
|
|
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) |
|
|
|
|
|
|
|
timesteps_tensor = self.scheduler.timesteps.to(self.device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
|
|
for i, t in enumerate(self.progress_bar(timesteps_tensor)): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
if clip_guidance_scale > 0: |
|
text_embeddings_for_guidance = ( |
|
text_embeddings.chunk(2)[1] if do_classifier_free_guidance else text_embeddings |
|
) |
|
noise_pred, latents = self.cond_fn( |
|
latents, |
|
t, |
|
i, |
|
text_embeddings_for_guidance, |
|
noise_pred, |
|
text_embeddings_clip, |
|
clip_guidance_scale, |
|
num_cutouts, |
|
use_cutouts, |
|
) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample |
|
|
|
|
|
latents = 1 / 0.18215 * latents |
|
image = self.vae.decode(latents).sample |
|
|
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
image = image.cpu().permute(0, 2, 3, 1).numpy() |
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
if not return_dict: |
|
return (image, None) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=None) |
|
|