Datasets:

ArXiv:
Diffusers Bot
Upload folder using huggingface_hub
ee03b6f verified
raw
history blame
4.86 kB
from typing import Union
import torch
from PIL import Image
from torchvision import transforms as tfms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
UNet2DConditionModel,
)
class MagicMixPipeline(DiffusionPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler],
):
super().__init__()
self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
# convert PIL image to latents
def encode(self, img):
with torch.no_grad():
latent = self.vae.encode(tfms.ToTensor()(img).unsqueeze(0).to(self.device) * 2 - 1)
latent = 0.18215 * latent.latent_dist.sample()
return latent
# convert latents to PIL image
def decode(self, latent):
latent = (1 / 0.18215) * latent
with torch.no_grad():
img = self.vae.decode(latent).sample
img = (img / 2 + 0.5).clamp(0, 1)
img = img.detach().cpu().permute(0, 2, 3, 1).numpy()
img = (img * 255).round().astype("uint8")
return Image.fromarray(img[0])
# convert prompt into text embeddings, also unconditional embeddings
def prep_text(self, prompt):
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embedding = self.text_encoder(text_input.input_ids.to(self.device))[0]
uncond_input = self.tokenizer(
"",
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
uncond_embedding = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
return torch.cat([uncond_embedding, text_embedding])
def __call__(
self,
img: Image.Image,
prompt: str,
kmin: float = 0.3,
kmax: float = 0.6,
mix_factor: float = 0.5,
seed: int = 42,
steps: int = 50,
guidance_scale: float = 7.5,
) -> Image.Image:
tmin = steps - int(kmin * steps)
tmax = steps - int(kmax * steps)
text_embeddings = self.prep_text(prompt)
self.scheduler.set_timesteps(steps)
width, height = img.size
encoded = self.encode(img)
torch.manual_seed(seed)
noise = torch.randn(
(1, self.unet.config.in_channels, height // 8, width // 8),
).to(self.device)
latents = self.scheduler.add_noise(
encoded,
noise,
timesteps=self.scheduler.timesteps[tmax],
)
input = torch.cat([latents] * 2)
input = self.scheduler.scale_model_input(input, self.scheduler.timesteps[tmax])
with torch.no_grad():
pred = self.unet(
input,
self.scheduler.timesteps[tmax],
encoder_hidden_states=text_embeddings,
).sample
pred_uncond, pred_text = pred.chunk(2)
pred = pred_uncond + guidance_scale * (pred_text - pred_uncond)
latents = self.scheduler.step(pred, self.scheduler.timesteps[tmax], latents).prev_sample
for i, t in enumerate(tqdm(self.scheduler.timesteps)):
if i > tmax:
if i < tmin: # layout generation phase
orig_latents = self.scheduler.add_noise(
encoded,
noise,
timesteps=t,
)
input = (mix_factor * latents) + (
1 - mix_factor
) * orig_latents # interpolating between layout noise and conditionally generated noise to preserve layout sematics
input = torch.cat([input] * 2)
else: # content generation phase
input = torch.cat([latents] * 2)
input = self.scheduler.scale_model_input(input, t)
with torch.no_grad():
pred = self.unet(
input,
t,
encoder_hidden_states=text_embeddings,
).sample
pred_uncond, pred_text = pred.chunk(2)
pred = pred_uncond + guidance_scale * (pred_text - pred_uncond)
latents = self.scheduler.step(pred, t, latents).prev_sample
return self.decode(latents)