|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Callable, List, Optional, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from packaging import version |
|
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import AutoencoderKL, DiffusionPipeline, UNet2DConditionModel |
|
from diffusers.configuration_utils import FrozenDict, deprecate |
|
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion.safety_checker import ( |
|
StableDiffusionSafetyChecker, |
|
) |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import ( |
|
is_accelerate_available, |
|
is_accelerate_version, |
|
logging, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def prepare_mask_and_masked_image(image, mask): |
|
""" |
|
Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be |
|
converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the |
|
``image`` and ``1`` for the ``mask``. |
|
The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be |
|
binarized (``mask > 0.5``) and cast to ``torch.float32`` too. |
|
Args: |
|
image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint. |
|
It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width`` |
|
``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``. |
|
mask (_type_): The mask to apply to the image, i.e. regions to inpaint. |
|
It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width`` |
|
``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``. |
|
Raises: |
|
ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask |
|
should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions. |
|
TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not |
|
(ot the other way around). |
|
Returns: |
|
tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4 |
|
dimensions: ``batch x channels x height x width``. |
|
""" |
|
if isinstance(image, torch.Tensor): |
|
if not isinstance(mask, torch.Tensor): |
|
raise TypeError(f"`image` is a torch.Tensor but `mask` (type: {type(mask)} is not") |
|
|
|
|
|
if image.ndim == 3: |
|
assert image.shape[0] == 3, "Image outside a batch should be of shape (3, H, W)" |
|
image = image.unsqueeze(0) |
|
|
|
|
|
if mask.ndim == 2: |
|
mask = mask.unsqueeze(0).unsqueeze(0) |
|
|
|
|
|
if mask.ndim == 3: |
|
|
|
if mask.shape[0] == 1: |
|
mask = mask.unsqueeze(0) |
|
|
|
|
|
else: |
|
mask = mask.unsqueeze(1) |
|
|
|
assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions" |
|
assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions" |
|
assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size" |
|
|
|
|
|
if image.min() < -1 or image.max() > 1: |
|
raise ValueError("Image should be in [-1, 1] range") |
|
|
|
|
|
if mask.min() < 0 or mask.max() > 1: |
|
raise ValueError("Mask should be in [0, 1] range") |
|
|
|
|
|
mask[mask < 0.5] = 0 |
|
mask[mask >= 0.5] = 1 |
|
|
|
|
|
image = image.to(dtype=torch.float32) |
|
elif isinstance(mask, torch.Tensor): |
|
raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not") |
|
else: |
|
|
|
if isinstance(image, (PIL.Image.Image, np.ndarray)): |
|
image = [image] |
|
|
|
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): |
|
image = [np.array(i.convert("RGB"))[None, :] for i in image] |
|
image = np.concatenate(image, axis=0) |
|
elif isinstance(image, list) and isinstance(image[0], np.ndarray): |
|
image = np.concatenate([i[None, :] for i in image], axis=0) |
|
|
|
image = image.transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 |
|
|
|
|
|
if isinstance(mask, (PIL.Image.Image, np.ndarray)): |
|
mask = [mask] |
|
|
|
if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image): |
|
mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0) |
|
mask = mask.astype(np.float32) / 255.0 |
|
elif isinstance(mask, list) and isinstance(mask[0], np.ndarray): |
|
mask = np.concatenate([m[None, None, :] for m in mask], axis=0) |
|
|
|
mask[mask < 0.5] = 0 |
|
mask[mask >= 0.5] = 1 |
|
mask = torch.from_numpy(mask) |
|
|
|
|
|
masked_image = image |
|
|
|
return mask, masked_image |
|
|
|
|
|
class StableDiffusionRepaintPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin): |
|
r""" |
|
Pipeline for text-guided image inpainting using Stable Diffusion. *This is an experimental feature*. |
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
In addition the pipeline inherits the following loading methods: |
|
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`] |
|
- *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`] |
|
as well as the following saving methods: |
|
- *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`] |
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
safety_checker ([`StableDiffusionSafetyChecker`]): |
|
Classification module that estimates whether generated images could be considered offensive or harmful. |
|
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. |
|
feature_extractor ([`CLIPImageProcessor`]): |
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`. |
|
""" |
|
_optional_components = ["safety_checker", "feature_extractor"] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
tokenizer: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
requires_safety_checker: bool = True, |
|
): |
|
super().__init__() |
|
|
|
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" |
|
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " |
|
"to update the config accordingly as leaving `steps_offset` might led to incorrect results" |
|
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," |
|
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" |
|
" file" |
|
) |
|
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(scheduler.config) |
|
new_config["steps_offset"] = 1 |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if hasattr(scheduler.config, "skip_prk_steps") and scheduler.config.skip_prk_steps is False: |
|
deprecation_message = ( |
|
f"The configuration file of this scheduler: {scheduler} has not set the configuration" |
|
" `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" |
|
" sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" |
|
" incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" |
|
" Hub, it would be very nice if you could open a Pull request for the" |
|
" `scheduler/scheduler_config.json` file" |
|
) |
|
deprecate( |
|
"skip_prk_steps not set", |
|
"1.0.0", |
|
deprecation_message, |
|
standard_warn=False, |
|
) |
|
new_config = dict(scheduler.config) |
|
new_config["skip_prk_steps"] = True |
|
scheduler._internal_dict = FrozenDict(new_config) |
|
|
|
if safety_checker is None and requires_safety_checker: |
|
logger.warning( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
raise ValueError( |
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
) |
|
|
|
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse( |
|
version.parse(unet.config._diffusers_version).base_version |
|
) < version.parse("0.9.0.dev0") |
|
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64 |
|
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64: |
|
deprecation_message = ( |
|
"The configuration file of the unet has set the default `sample_size` to smaller than" |
|
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the" |
|
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-" |
|
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5" |
|
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the" |
|
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`" |
|
" in the config might lead to incorrect results in future versions. If you have downloaded this" |
|
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for" |
|
" the `unet/config.json` file" |
|
) |
|
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False) |
|
new_config = dict(unet.config) |
|
new_config["sample_size"] = 64 |
|
unet._internal_dict = FrozenDict(new_config) |
|
|
|
if unet.config.in_channels != 4: |
|
logger.warning( |
|
f"You have loaded a UNet with {unet.config.in_channels} input channels, whereas by default," |
|
f" {self.__class__} assumes that `pipeline.unet` has 4 input channels: 4 for `num_channels_latents`," |
|
". If you did not intend to modify" |
|
" this behavior, please check whether you have loaded the right checkpoint." |
|
) |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
|
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, |
|
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a |
|
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called. |
|
Note that offloading happens on a submodule basis. Memory savings are higher than with |
|
`enable_model_cpu_offload`, but performance is lower. |
|
""" |
|
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"): |
|
from accelerate import cpu_offload |
|
else: |
|
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
if self.device.type != "cpu": |
|
self.to("cpu", silence_dtype_warnings=True) |
|
torch.cuda.empty_cache() |
|
|
|
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: |
|
cpu_offload(cpu_offloaded_model, device) |
|
|
|
if self.safety_checker is not None: |
|
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True) |
|
|
|
|
|
def enable_model_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared |
|
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` |
|
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with |
|
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. |
|
""" |
|
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): |
|
from accelerate import cpu_offload_with_hook |
|
else: |
|
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
if self.device.type != "cpu": |
|
self.to("cpu", silence_dtype_warnings=True) |
|
torch.cuda.empty_cache() |
|
|
|
hook = None |
|
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]: |
|
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) |
|
|
|
if self.safety_checker is not None: |
|
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook) |
|
|
|
|
|
self.final_offload_hook = hook |
|
|
|
@property |
|
|
|
def _execution_device(self): |
|
r""" |
|
Returns the device on which the pipeline's models will be executed. After calling |
|
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module |
|
hooks. |
|
""" |
|
if not hasattr(self.unet, "_hf_hook"): |
|
return self.device |
|
for module in self.unet.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
|
|
def _encode_prompt( |
|
self, |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt=None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
""" |
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) |
|
|
|
text_inputs = self.tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=self.tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = self.tokenizer.batch_decode( |
|
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
|
) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = text_inputs.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
prompt_embeds = self.text_encoder( |
|
text_input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
prompt_embeds = prompt_embeds[0] |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
|
|
if isinstance(self, TextualInversionLoaderMixin): |
|
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = self.tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: |
|
attention_mask = uncond_input.attention_mask.to(device) |
|
else: |
|
attention_mask = None |
|
|
|
negative_prompt_embeds = self.text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
return prompt_embeds |
|
|
|
|
|
def run_safety_checker(self, image, device, dtype): |
|
if self.safety_checker is not None: |
|
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
) |
|
else: |
|
has_nsfw_concept = None |
|
return image, has_nsfw_concept |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
|
|
def decode_latents(self, latents): |
|
latents = 1 / self.vae.config.scaling_factor * latents |
|
image = self.vae.decode(latents).sample |
|
image = (image / 2 + 0.5).clamp(0, 1) |
|
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
return image |
|
|
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def prepare_mask_latents( |
|
self, |
|
mask, |
|
masked_image, |
|
batch_size, |
|
height, |
|
width, |
|
dtype, |
|
device, |
|
generator, |
|
do_classifier_free_guidance, |
|
): |
|
|
|
|
|
|
|
mask = torch.nn.functional.interpolate( |
|
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
) |
|
mask = mask.to(device=device, dtype=dtype) |
|
|
|
masked_image = masked_image.to(device=device, dtype=dtype) |
|
|
|
|
|
if isinstance(generator, list): |
|
masked_image_latents = [ |
|
self.vae.encode(masked_image[i : i + 1]).latent_dist.sample(generator=generator[i]) |
|
for i in range(batch_size) |
|
] |
|
masked_image_latents = torch.cat(masked_image_latents, dim=0) |
|
else: |
|
masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator) |
|
masked_image_latents = self.vae.config.scaling_factor * masked_image_latents |
|
|
|
|
|
if mask.shape[0] < batch_size: |
|
if not batch_size % mask.shape[0] == 0: |
|
raise ValueError( |
|
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" |
|
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" |
|
" of masks that you pass is divisible by the total requested batch size." |
|
) |
|
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) |
|
if masked_image_latents.shape[0] < batch_size: |
|
if not batch_size % masked_image_latents.shape[0] == 0: |
|
raise ValueError( |
|
"The passed images and the required batch size don't match. Images are supposed to be duplicated" |
|
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." |
|
" Make sure the number of images that you pass is divisible by the total requested batch size." |
|
) |
|
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1) |
|
|
|
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask |
|
masked_image_latents = ( |
|
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents |
|
) |
|
|
|
|
|
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) |
|
return mask, masked_image_latents |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
image: Union[torch.FloatTensor, PIL.Image.Image] = None, |
|
mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
jump_length: Optional[int] = 10, |
|
jump_n_sample: Optional[int] = 10, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
image (`PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will |
|
be masked out with `mask_image` and repainted according to `prompt`. |
|
mask_image (`PIL.Image.Image`): |
|
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be |
|
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted |
|
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) |
|
instead of 3, so the expected shape would be `(B, H, W, 1)`. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
jump_length (`int`, *optional*, defaults to 10): |
|
The number of steps taken forward in time before going backward in time for a single jump ("j" in |
|
RePaint paper). Take a look at Figure 9 and 10 in https://arxiv.org/pdf/2201.09865.pdf. |
|
jump_n_sample (`int`, *optional*, defaults to 10): |
|
The number of times we will make forward time jump for a given chosen time sample. Take a look at |
|
Figure 9 and 10 in https://arxiv.org/pdf/2201.09865.pdf. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds`. instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` |
|
is less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
Examples: |
|
```py |
|
>>> import PIL |
|
>>> import requests |
|
>>> import torch |
|
>>> from io import BytesIO |
|
>>> from diffusers import StableDiffusionPipeline, RePaintScheduler |
|
>>> def download_image(url): |
|
... response = requests.get(url) |
|
... return PIL.Image.open(BytesIO(response.content)).convert("RGB") |
|
>>> base_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/" |
|
>>> img_url = base_url + "overture-creations-5sI6fQgYIuo.png" |
|
>>> mask_url = base_url + "overture-creations-5sI6fQgYIuo_mask.png " |
|
>>> init_image = download_image(img_url).resize((512, 512)) |
|
>>> mask_image = download_image(mask_url).resize((512, 512)) |
|
>>> pipe = DiffusionPipeline.from_pretrained( |
|
... "CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16, custom_pipeline="stable_diffusion_repaint", |
|
... ) |
|
>>> pipe.scheduler = RePaintScheduler.from_config(pipe.scheduler.config) |
|
>>> pipe = pipe.to("cuda") |
|
>>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench" |
|
>>> image = pipe(prompt=prompt, image=init_image, mask_image=mask_image).images[0] |
|
``` |
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
) |
|
|
|
if image is None: |
|
raise ValueError("`image` input cannot be undefined.") |
|
|
|
if mask_image is None: |
|
raise ValueError("`mask_image` input cannot be undefined.") |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
) |
|
|
|
|
|
mask, masked_image = prepare_mask_and_masked_image(image, mask_image) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, jump_length, jump_n_sample, device) |
|
self.scheduler.eta = eta |
|
|
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
|
|
num_channels_latents = self.vae.config.latent_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
mask, masked_image_latents = self.prepare_mask_latents( |
|
mask, |
|
masked_image, |
|
batch_size * num_images_per_prompt, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
do_classifier_free_guidance=False, |
|
) |
|
|
|
|
|
|
|
|
|
if num_channels_latents != self.unet.config.in_channels: |
|
raise ValueError( |
|
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" |
|
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} " |
|
f" = Please verify the config of" |
|
" `pipeline.unet` or your `mask_image` or `image` input." |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
t_last = timesteps[0] + 1 |
|
|
|
|
|
with self.progress_bar(total=len(timesteps)) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if t >= t_last: |
|
|
|
latents = self.scheduler.undo_step(latents, t_last, generator) |
|
progress_bar.update() |
|
t_last = t |
|
continue |
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
|
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=prompt_embeds).sample |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, |
|
t, |
|
latents, |
|
masked_image_latents, |
|
mask, |
|
**extra_step_kwargs, |
|
).prev_sample |
|
|
|
|
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
t_last = t |
|
|
|
|
|
image = self.decode_latents(latents) |
|
|
|
|
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
|
|
|
|
if output_type == "pil": |
|
image = self.numpy_to_pil(image) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|