|
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
|
|
from diffusers import StableDiffusionPipeline |
|
from diffusers.models.attention import BasicTransformerBlock |
|
from diffusers.models.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.utils import PIL_INTERPOLATION, logging, randn_tensor |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import UniPCMultistepScheduler |
|
>>> from diffusers.utils import load_image |
|
|
|
>>> input_image = load_image("https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png") |
|
|
|
>>> pipe = StableDiffusionReferencePipeline.from_pretrained( |
|
"runwayml/stable-diffusion-v1-5", |
|
safety_checker=None, |
|
torch_dtype=torch.float16 |
|
).to('cuda:0') |
|
|
|
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe_controlnet.scheduler.config) |
|
|
|
>>> result_img = pipe(ref_image=input_image, |
|
prompt="1girl", |
|
num_inference_steps=20, |
|
reference_attn=True, |
|
reference_adain=True).images[0] |
|
|
|
>>> result_img.show() |
|
``` |
|
""" |
|
|
|
|
|
def torch_dfs(model: torch.nn.Module): |
|
result = [model] |
|
for child in model.children(): |
|
result += torch_dfs(child) |
|
return result |
|
|
|
|
|
class StableDiffusionReferencePipeline(StableDiffusionPipeline): |
|
def _default_height_width(self, height, width, image): |
|
|
|
|
|
|
|
while isinstance(image, list): |
|
image = image[0] |
|
|
|
if height is None: |
|
if isinstance(image, PIL.Image.Image): |
|
height = image.height |
|
elif isinstance(image, torch.Tensor): |
|
height = image.shape[2] |
|
|
|
height = (height // 8) * 8 |
|
|
|
if width is None: |
|
if isinstance(image, PIL.Image.Image): |
|
width = image.width |
|
elif isinstance(image, torch.Tensor): |
|
width = image.shape[3] |
|
|
|
width = (width // 8) * 8 |
|
|
|
return height, width |
|
|
|
def prepare_image( |
|
self, |
|
image, |
|
width, |
|
height, |
|
batch_size, |
|
num_images_per_prompt, |
|
device, |
|
dtype, |
|
do_classifier_free_guidance=False, |
|
guess_mode=False, |
|
): |
|
if not isinstance(image, torch.Tensor): |
|
if isinstance(image, PIL.Image.Image): |
|
image = [image] |
|
|
|
if isinstance(image[0], PIL.Image.Image): |
|
images = [] |
|
|
|
for image_ in image: |
|
image_ = image_.convert("RGB") |
|
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]) |
|
image_ = np.array(image_) |
|
image_ = image_[None, :] |
|
images.append(image_) |
|
|
|
image = images |
|
|
|
image = np.concatenate(image, axis=0) |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = (image - 0.5) / 0.5 |
|
image = image.transpose(0, 3, 1, 2) |
|
image = torch.from_numpy(image) |
|
elif isinstance(image[0], torch.Tensor): |
|
image = torch.cat(image, dim=0) |
|
|
|
image_batch_size = image.shape[0] |
|
|
|
if image_batch_size == 1: |
|
repeat_by = batch_size |
|
else: |
|
|
|
repeat_by = num_images_per_prompt |
|
|
|
image = image.repeat_interleave(repeat_by, dim=0) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
if do_classifier_free_guidance and not guess_mode: |
|
image = torch.cat([image] * 2) |
|
|
|
return image |
|
|
|
def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance): |
|
refimage = refimage.to(device=device, dtype=dtype) |
|
|
|
|
|
if isinstance(generator, list): |
|
ref_image_latents = [ |
|
self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i]) |
|
for i in range(batch_size) |
|
] |
|
ref_image_latents = torch.cat(ref_image_latents, dim=0) |
|
else: |
|
ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator) |
|
ref_image_latents = self.vae.config.scaling_factor * ref_image_latents |
|
|
|
|
|
if ref_image_latents.shape[0] < batch_size: |
|
if not batch_size % ref_image_latents.shape[0] == 0: |
|
raise ValueError( |
|
"The passed images and the required batch size don't match. Images are supposed to be duplicated" |
|
f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed." |
|
" Make sure the number of images that you pass is divisible by the total requested batch size." |
|
) |
|
ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1) |
|
|
|
ref_image_latents = torch.cat([ref_image_latents] * 2) if do_classifier_free_guidance else ref_image_latents |
|
|
|
|
|
ref_image_latents = ref_image_latents.to(device=device, dtype=dtype) |
|
return ref_image_latents |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
ref_image: Union[torch.FloatTensor, PIL.Image.Image] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
attention_auto_machine_weight: float = 1.0, |
|
gn_auto_machine_weight: float = 1.0, |
|
style_fidelity: float = 0.5, |
|
reference_attn: bool = True, |
|
reference_adain: bool = True, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
ref_image (`torch.FloatTensor`, `PIL.Image.Image`): |
|
The Reference Control input condition. Reference Control uses this input condition to generate guidance to Unet. If |
|
the type is specified as `Torch.FloatTensor`, it is passed to Reference Control as is. `PIL.Image.Image` can |
|
also be accepted as an image. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). |
|
attention_auto_machine_weight (`float`): |
|
Weight of using reference query for self attention's context. |
|
If attention_auto_machine_weight=1.0, use reference query for all self attention's context. |
|
gn_auto_machine_weight (`float`): |
|
Weight of using reference adain. If gn_auto_machine_weight=2.0, use all reference adain plugins. |
|
style_fidelity (`float`): |
|
style fidelity of ref_uncond_xt. If style_fidelity=1.0, control more important, |
|
elif style_fidelity=0.0, prompt more important, else balanced. |
|
reference_attn (`bool`): |
|
Whether to use reference query for self attention's context. |
|
reference_adain (`bool`): |
|
Whether to use reference adain. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. |
|
When returning a tuple, the first element is a list with the generated images, and the second element is a |
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" |
|
(nsfw) content, according to the `safety_checker`. |
|
""" |
|
assert reference_attn or reference_adain, "`reference_attn` or `reference_adain` must be True." |
|
|
|
|
|
height, width = self._default_height_width(height, width, ref_image) |
|
|
|
|
|
self.check_inputs( |
|
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
prompt_embeds = self._encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
) |
|
|
|
|
|
ref_image = self.prepare_image( |
|
image=ref_image, |
|
width=width, |
|
height=height, |
|
batch_size=batch_size * num_images_per_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
device=device, |
|
dtype=prompt_embeds.dtype, |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
ref_image_latents = self.prepare_ref_latents( |
|
ref_image, |
|
batch_size * num_images_per_prompt, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
do_classifier_free_guidance, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
MODE = "write" |
|
uc_mask = ( |
|
torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt) |
|
.type_as(ref_image_latents) |
|
.bool() |
|
) |
|
|
|
def hacked_basic_transformer_inner_forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
timestep: Optional[torch.LongTensor] = None, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
class_labels: Optional[torch.LongTensor] = None, |
|
): |
|
if self.use_ada_layer_norm: |
|
norm_hidden_states = self.norm1(hidden_states, timestep) |
|
elif self.use_ada_layer_norm_zero: |
|
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( |
|
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype |
|
) |
|
else: |
|
norm_hidden_states = self.norm1(hidden_states) |
|
|
|
|
|
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} |
|
if self.only_cross_attention: |
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
else: |
|
if MODE == "write": |
|
self.bank.append(norm_hidden_states.detach().clone()) |
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
if MODE == "read": |
|
if attention_auto_machine_weight > self.attn_weight: |
|
attn_output_uc = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1), |
|
|
|
**cross_attention_kwargs, |
|
) |
|
attn_output_c = attn_output_uc.clone() |
|
if do_classifier_free_guidance and style_fidelity > 0: |
|
attn_output_c[uc_mask] = self.attn1( |
|
norm_hidden_states[uc_mask], |
|
encoder_hidden_states=norm_hidden_states[uc_mask], |
|
**cross_attention_kwargs, |
|
) |
|
attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc |
|
self.bank.clear() |
|
else: |
|
attn_output = self.attn1( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
if self.use_ada_layer_norm_zero: |
|
attn_output = gate_msa.unsqueeze(1) * attn_output |
|
hidden_states = attn_output + hidden_states |
|
|
|
if self.attn2 is not None: |
|
norm_hidden_states = ( |
|
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) |
|
) |
|
|
|
|
|
attn_output = self.attn2( |
|
norm_hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
hidden_states = attn_output + hidden_states |
|
|
|
|
|
norm_hidden_states = self.norm3(hidden_states) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] |
|
|
|
ff_output = self.ff(norm_hidden_states) |
|
|
|
if self.use_ada_layer_norm_zero: |
|
ff_output = gate_mlp.unsqueeze(1) * ff_output |
|
|
|
hidden_states = ff_output + hidden_states |
|
|
|
return hidden_states |
|
|
|
def hacked_mid_forward(self, *args, **kwargs): |
|
eps = 1e-6 |
|
x = self.original_forward(*args, **kwargs) |
|
if MODE == "write": |
|
if gn_auto_machine_weight >= self.gn_weight: |
|
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) |
|
self.mean_bank.append(mean) |
|
self.var_bank.append(var) |
|
if MODE == "read": |
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: |
|
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) |
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 |
|
mean_acc = sum(self.mean_bank) / float(len(self.mean_bank)) |
|
var_acc = sum(self.var_bank) / float(len(self.var_bank)) |
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 |
|
x_uc = (((x - mean) / std) * std_acc) + mean_acc |
|
x_c = x_uc.clone() |
|
if do_classifier_free_guidance and style_fidelity > 0: |
|
x_c[uc_mask] = x[uc_mask] |
|
x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc |
|
self.mean_bank = [] |
|
self.var_bank = [] |
|
return x |
|
|
|
def hack_CrossAttnDownBlock2D_forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
): |
|
eps = 1e-6 |
|
|
|
|
|
output_states = () |
|
|
|
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)): |
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_dict=False, |
|
)[0] |
|
if MODE == "write": |
|
if gn_auto_machine_weight >= self.gn_weight: |
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) |
|
self.mean_bank.append([mean]) |
|
self.var_bank.append([var]) |
|
if MODE == "read": |
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: |
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) |
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 |
|
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) |
|
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) |
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 |
|
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc |
|
hidden_states_c = hidden_states_uc.clone() |
|
if do_classifier_free_guidance and style_fidelity > 0: |
|
hidden_states_c[uc_mask] = hidden_states[uc_mask] |
|
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
if MODE == "read": |
|
self.mean_bank = [] |
|
self.var_bank = [] |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
return hidden_states, output_states |
|
|
|
def hacked_DownBlock2D_forward(self, hidden_states, temb=None): |
|
eps = 1e-6 |
|
|
|
output_states = () |
|
|
|
for i, resnet in enumerate(self.resnets): |
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
if MODE == "write": |
|
if gn_auto_machine_weight >= self.gn_weight: |
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) |
|
self.mean_bank.append([mean]) |
|
self.var_bank.append([var]) |
|
if MODE == "read": |
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: |
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) |
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 |
|
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) |
|
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) |
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 |
|
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc |
|
hidden_states_c = hidden_states_uc.clone() |
|
if do_classifier_free_guidance and style_fidelity > 0: |
|
hidden_states_c[uc_mask] = hidden_states[uc_mask] |
|
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
if MODE == "read": |
|
self.mean_bank = [] |
|
self.var_bank = [] |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
|
|
output_states = output_states + (hidden_states,) |
|
|
|
return hidden_states, output_states |
|
|
|
def hacked_CrossAttnUpBlock2D_forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...], |
|
temb: Optional[torch.FloatTensor] = None, |
|
encoder_hidden_states: Optional[torch.FloatTensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
upsample_size: Optional[int] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
encoder_attention_mask: Optional[torch.FloatTensor] = None, |
|
): |
|
eps = 1e-6 |
|
|
|
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)): |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
hidden_states = resnet(hidden_states, temb) |
|
hidden_states = attn( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_dict=False, |
|
)[0] |
|
|
|
if MODE == "write": |
|
if gn_auto_machine_weight >= self.gn_weight: |
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) |
|
self.mean_bank.append([mean]) |
|
self.var_bank.append([var]) |
|
if MODE == "read": |
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: |
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) |
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 |
|
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) |
|
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) |
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 |
|
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc |
|
hidden_states_c = hidden_states_uc.clone() |
|
if do_classifier_free_guidance and style_fidelity > 0: |
|
hidden_states_c[uc_mask] = hidden_states[uc_mask] |
|
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc |
|
|
|
if MODE == "read": |
|
self.mean_bank = [] |
|
self.var_bank = [] |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size) |
|
|
|
return hidden_states |
|
|
|
def hacked_UpBlock2D_forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None): |
|
eps = 1e-6 |
|
for i, resnet in enumerate(self.resnets): |
|
|
|
res_hidden_states = res_hidden_states_tuple[-1] |
|
res_hidden_states_tuple = res_hidden_states_tuple[:-1] |
|
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) |
|
hidden_states = resnet(hidden_states, temb) |
|
|
|
if MODE == "write": |
|
if gn_auto_machine_weight >= self.gn_weight: |
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) |
|
self.mean_bank.append([mean]) |
|
self.var_bank.append([var]) |
|
if MODE == "read": |
|
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: |
|
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) |
|
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 |
|
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) |
|
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) |
|
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 |
|
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc |
|
hidden_states_c = hidden_states_uc.clone() |
|
if do_classifier_free_guidance and style_fidelity > 0: |
|
hidden_states_c[uc_mask] = hidden_states[uc_mask] |
|
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc |
|
|
|
if MODE == "read": |
|
self.mean_bank = [] |
|
self.var_bank = [] |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states, upsample_size) |
|
|
|
return hidden_states |
|
|
|
if reference_attn: |
|
attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)] |
|
attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0]) |
|
|
|
for i, module in enumerate(attn_modules): |
|
module._original_inner_forward = module.forward |
|
module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock) |
|
module.bank = [] |
|
module.attn_weight = float(i) / float(len(attn_modules)) |
|
|
|
if reference_adain: |
|
gn_modules = [self.unet.mid_block] |
|
self.unet.mid_block.gn_weight = 0 |
|
|
|
down_blocks = self.unet.down_blocks |
|
for w, module in enumerate(down_blocks): |
|
module.gn_weight = 1.0 - float(w) / float(len(down_blocks)) |
|
gn_modules.append(module) |
|
|
|
up_blocks = self.unet.up_blocks |
|
for w, module in enumerate(up_blocks): |
|
module.gn_weight = float(w) / float(len(up_blocks)) |
|
gn_modules.append(module) |
|
|
|
for i, module in enumerate(gn_modules): |
|
if getattr(module, "original_forward", None) is None: |
|
module.original_forward = module.forward |
|
if i == 0: |
|
|
|
module.forward = hacked_mid_forward.__get__(module, torch.nn.Module) |
|
elif isinstance(module, CrossAttnDownBlock2D): |
|
module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D) |
|
elif isinstance(module, DownBlock2D): |
|
module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D) |
|
elif isinstance(module, CrossAttnUpBlock2D): |
|
module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D) |
|
elif isinstance(module, UpBlock2D): |
|
module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D) |
|
module.mean_bank = [] |
|
module.var_bank = [] |
|
module.gn_weight *= 2 |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
noise = randn_tensor( |
|
ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype |
|
) |
|
ref_xt = self.scheduler.add_noise( |
|
ref_image_latents, |
|
noise, |
|
t.reshape( |
|
1, |
|
), |
|
) |
|
ref_xt = self.scheduler.scale_model_input(ref_xt, t) |
|
|
|
MODE = "write" |
|
self.unet( |
|
ref_xt, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
return_dict=False, |
|
) |
|
|
|
|
|
MODE = "read" |
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|