|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
from typing import Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import ( |
|
BertModel, |
|
BertTokenizer, |
|
CLIPImageProcessor, |
|
MT5Tokenizer, |
|
T5EncoderModel, |
|
) |
|
|
|
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback |
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.models import AutoencoderKL, HunyuanDiT2DModel |
|
from diffusers.models.embeddings import get_2d_rotary_pos_embed |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion.safety_checker import ( |
|
StableDiffusionSafetyChecker, |
|
) |
|
from diffusers.schedulers import DDPMScheduler |
|
from diffusers.utils import ( |
|
deprecate, |
|
is_torch_xla_available, |
|
logging, |
|
replace_example_docstring, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
if is_torch_xla_available(): |
|
import torch_xla.core.xla_model as xm |
|
|
|
XLA_AVAILABLE = True |
|
else: |
|
XLA_AVAILABLE = False |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import FlowMatchEulerDiscreteScheduler |
|
>>> from diffusers.utils import load_image |
|
>>> from PIL import Image |
|
>>> from torchvision import transforms |
|
>>> from pipeline_hunyuandit_differential_img2img import HunyuanDiTDifferentialImg2ImgPipeline |
|
>>> pipe = HunyuanDiTDifferentialImg2ImgPipeline.from_pretrained( |
|
>>> "Tencent-Hunyuan/HunyuanDiT-Diffusers", torch_dtype=torch.float16 |
|
>>> ).to("cuda") |
|
>>> source_image = load_image( |
|
>>> "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png" |
|
>>> ) |
|
>>> map = load_image( |
|
>>> "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask_2.png" |
|
>>> ) |
|
>>> prompt = "a green pear" |
|
>>> negative_prompt = "blurry" |
|
>>> image = pipe( |
|
>>> prompt=prompt, |
|
>>> negative_prompt=negative_prompt, |
|
>>> image=source_image, |
|
>>> num_inference_steps=28, |
|
>>> guidance_scale=4.5, |
|
>>> strength=1.0, |
|
>>> map=map, |
|
>>> ).images[0] |
|
|
|
``` |
|
""" |
|
|
|
STANDARD_RATIO = np.array( |
|
[ |
|
1.0, |
|
4.0 / 3.0, |
|
3.0 / 4.0, |
|
16.0 / 9.0, |
|
9.0 / 16.0, |
|
] |
|
) |
|
STANDARD_SHAPE = [ |
|
[(1024, 1024), (1280, 1280)], |
|
[(1024, 768), (1152, 864), (1280, 960)], |
|
[(768, 1024), (864, 1152), (960, 1280)], |
|
[(1280, 768)], |
|
[(768, 1280)], |
|
] |
|
STANDARD_AREA = [np.array([w * h for w, h in shapes]) for shapes in STANDARD_SHAPE] |
|
SUPPORTED_SHAPE = [ |
|
(1024, 1024), |
|
(1280, 1280), |
|
(1024, 768), |
|
(1152, 864), |
|
(1280, 960), |
|
(768, 1024), |
|
(864, 1152), |
|
(960, 1280), |
|
(1280, 768), |
|
(768, 1280), |
|
] |
|
|
|
|
|
def map_to_standard_shapes(target_width, target_height): |
|
target_ratio = target_width / target_height |
|
closest_ratio_idx = np.argmin(np.abs(STANDARD_RATIO - target_ratio)) |
|
closest_area_idx = np.argmin(np.abs(STANDARD_AREA[closest_ratio_idx] - target_width * target_height)) |
|
width, height = STANDARD_SHAPE[closest_ratio_idx][closest_area_idx] |
|
return width, height |
|
|
|
|
|
def get_resize_crop_region_for_grid(src, tgt_size): |
|
th = tw = tgt_size |
|
h, w = src |
|
|
|
r = h / w |
|
|
|
|
|
if r > 1: |
|
resize_height = th |
|
resize_width = int(round(th / h * w)) |
|
else: |
|
resize_width = tw |
|
resize_height = int(round(tw / w * h)) |
|
|
|
crop_top = int(round((th - resize_height) / 2.0)) |
|
crop_left = int(round((tw - resize_width) / 2.0)) |
|
|
|
return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) |
|
|
|
|
|
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): |
|
""" |
|
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 |
|
""" |
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) |
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) |
|
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) |
|
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg |
|
return noise_cfg |
|
|
|
|
|
|
|
def retrieve_latents( |
|
encoder_output: torch.Tensor, |
|
generator: Optional[torch.Generator] = None, |
|
sample_mode: str = "sample", |
|
): |
|
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": |
|
return encoder_output.latent_dist.sample(generator) |
|
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": |
|
return encoder_output.latent_dist.mode() |
|
elif hasattr(encoder_output, "latents"): |
|
return encoder_output.latents |
|
else: |
|
raise AttributeError("Could not access latents of provided encoder_output") |
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
sigmas: Optional[List[float]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` |
|
must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, |
|
`num_inference_steps` and `sigmas` must be `None`. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, |
|
`num_inference_steps` and `timesteps` must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None and sigmas is not None: |
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
elif sigmas is not None: |
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accept_sigmas: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" sigmas schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
class HunyuanDiTDifferentialImg2ImgPipeline(DiffusionPipeline): |
|
r""" |
|
Differential Pipeline for English/Chinese-to-image generation using HunyuanDiT. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
HunyuanDiT uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by |
|
ourselves) |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. We use |
|
`sdxl-vae-fp16-fix`. |
|
text_encoder (Optional[`~transformers.BertModel`, `~transformers.CLIPTextModel`]): |
|
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). |
|
HunyuanDiT uses a fine-tuned [bilingual CLIP]. |
|
tokenizer (Optional[`~transformers.BertTokenizer`, `~transformers.CLIPTokenizer`]): |
|
A `BertTokenizer` or `CLIPTokenizer` to tokenize text. |
|
transformer ([`HunyuanDiT2DModel`]): |
|
The HunyuanDiT model designed by Tencent Hunyuan. |
|
text_encoder_2 (`T5EncoderModel`): |
|
The mT5 embedder. Specifically, it is 't5-v1_1-xxl'. |
|
tokenizer_2 (`MT5Tokenizer`): |
|
The tokenizer for the mT5 embedder. |
|
scheduler ([`DDPMScheduler`]): |
|
A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" |
|
_optional_components = [ |
|
"safety_checker", |
|
"feature_extractor", |
|
"text_encoder_2", |
|
"tokenizer_2", |
|
"text_encoder", |
|
"tokenizer", |
|
] |
|
_exclude_from_cpu_offload = ["safety_checker"] |
|
_callback_tensor_inputs = [ |
|
"latents", |
|
"prompt_embeds", |
|
"negative_prompt_embeds", |
|
"prompt_embeds_2", |
|
"negative_prompt_embeds_2", |
|
] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: BertModel, |
|
tokenizer: BertTokenizer, |
|
transformer: HunyuanDiT2DModel, |
|
scheduler: DDPMScheduler, |
|
safety_checker: StableDiffusionSafetyChecker, |
|
feature_extractor: CLIPImageProcessor, |
|
requires_safety_checker: bool = True, |
|
text_encoder_2=T5EncoderModel, |
|
tokenizer_2=MT5Tokenizer, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
transformer=transformer, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
text_encoder_2=text_encoder_2, |
|
) |
|
|
|
if safety_checker is None and requires_safety_checker: |
|
logger.warning( |
|
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" |
|
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" |
|
" results in services or applications open to the public. Both the diffusers team and Hugging Face" |
|
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" |
|
" it only for use-cases that involve analyzing network behavior or auditing its results. For more" |
|
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." |
|
) |
|
|
|
if safety_checker is not None and feature_extractor is None: |
|
raise ValueError( |
|
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" |
|
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." |
|
) |
|
|
|
self.vae_scale_factor = ( |
|
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 |
|
) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.mask_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, |
|
do_normalize=False, |
|
do_convert_grayscale=True, |
|
) |
|
self.register_to_config(requires_safety_checker=requires_safety_checker) |
|
self.default_sample_size = ( |
|
self.transformer.config.sample_size |
|
if hasattr(self, "transformer") and self.transformer is not None |
|
else 128 |
|
) |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt: str, |
|
device: torch.device = None, |
|
dtype: torch.dtype = None, |
|
num_images_per_prompt: int = 1, |
|
do_classifier_free_guidance: bool = True, |
|
negative_prompt: Optional[str] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
prompt_attention_mask: Optional[torch.Tensor] = None, |
|
negative_prompt_attention_mask: Optional[torch.Tensor] = None, |
|
max_sequence_length: Optional[int] = None, |
|
text_encoder_index: int = 0, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
device: (`torch.device`): |
|
torch device |
|
dtype (`torch.dtype`): |
|
torch dtype |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
prompt_attention_mask (`torch.Tensor`, *optional*): |
|
Attention mask for the prompt. Required when `prompt_embeds` is passed directly. |
|
negative_prompt_attention_mask (`torch.Tensor`, *optional*): |
|
Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly. |
|
max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt. |
|
text_encoder_index (`int`, *optional*): |
|
Index of the text encoder to use. `0` for clip and `1` for T5. |
|
""" |
|
if dtype is None: |
|
if self.text_encoder_2 is not None: |
|
dtype = self.text_encoder_2.dtype |
|
elif self.transformer is not None: |
|
dtype = self.transformer.dtype |
|
else: |
|
dtype = None |
|
|
|
if device is None: |
|
device = self._execution_device |
|
|
|
tokenizers = [self.tokenizer, self.tokenizer_2] |
|
text_encoders = [self.text_encoder, self.text_encoder_2] |
|
|
|
tokenizer = tokenizers[text_encoder_index] |
|
text_encoder = text_encoders[text_encoder_index] |
|
|
|
if max_sequence_length is None: |
|
if text_encoder_index == 0: |
|
max_length = 77 |
|
if text_encoder_index == 1: |
|
max_length = 256 |
|
else: |
|
max_length = max_sequence_length |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
if prompt_embeds is None: |
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_attention_mask=True, |
|
return_tensors="pt", |
|
) |
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_attention_mask = text_inputs.attention_mask.to(device) |
|
prompt_embeds = text_encoder( |
|
text_input_ids.to(device), |
|
attention_mask=prompt_attention_mask, |
|
) |
|
prompt_embeds = prompt_embeds[0] |
|
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None: |
|
uncond_tokens: List[str] |
|
if negative_prompt is None: |
|
uncond_tokens = [""] * batch_size |
|
elif prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = negative_prompt |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = tokenizer( |
|
uncond_tokens, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
negative_prompt_attention_mask = uncond_input.attention_mask.to(device) |
|
negative_prompt_embeds = text_encoder( |
|
uncond_input.input_ids.to(device), |
|
attention_mask=negative_prompt_attention_mask, |
|
) |
|
negative_prompt_embeds = negative_prompt_embeds[0] |
|
negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) |
|
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
return ( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
prompt_attention_mask, |
|
negative_prompt_attention_mask, |
|
) |
|
|
|
|
|
def run_safety_checker(self, image, device, dtype): |
|
if self.safety_checker is None: |
|
has_nsfw_concept = None |
|
else: |
|
if torch.is_tensor(image): |
|
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") |
|
else: |
|
feature_extractor_input = self.image_processor.numpy_to_pil(image) |
|
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) |
|
image, has_nsfw_concept = self.safety_checker( |
|
images=image, clip_input=safety_checker_input.pixel_values.to(dtype) |
|
) |
|
return image, has_nsfw_concept |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
height, |
|
width, |
|
negative_prompt=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
prompt_attention_mask=None, |
|
negative_prompt_attention_mask=None, |
|
prompt_embeds_2=None, |
|
negative_prompt_embeds_2=None, |
|
prompt_attention_mask_2=None, |
|
negative_prompt_attention_mask_2=None, |
|
callback_on_step_end_tensor_inputs=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is None and prompt_embeds_2 is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
|
|
if prompt_embeds is not None and prompt_attention_mask is None: |
|
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") |
|
|
|
if prompt_embeds_2 is not None and prompt_attention_mask_2 is None: |
|
raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: |
|
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") |
|
|
|
if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None: |
|
raise ValueError( |
|
"Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`." |
|
) |
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None: |
|
if prompt_embeds_2.shape != negative_prompt_embeds_2.shape: |
|
raise ValueError( |
|
"`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`" |
|
f" {negative_prompt_embeds_2.shape}." |
|
) |
|
|
|
|
|
def get_timesteps(self, num_inference_steps, strength, device): |
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
|
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] |
|
if hasattr(self.scheduler, "set_begin_index"): |
|
self.scheduler.set_begin_index(t_start * self.scheduler.order) |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
height, |
|
width, |
|
image, |
|
timestep, |
|
dtype, |
|
device, |
|
generator=None, |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
int(height) // self.vae_scale_factor, |
|
int(width) // self.vae_scale_factor, |
|
) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
elif isinstance(generator, list): |
|
init_latents = [ |
|
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) for i in range(batch_size) |
|
] |
|
init_latents = torch.cat(init_latents, dim=0) |
|
|
|
else: |
|
init_latents = retrieve_latents(self.vae.encode(image), generator=generator) |
|
|
|
init_latents = init_latents * self.vae.config.scaling_factor |
|
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: |
|
|
|
deprecation_message = ( |
|
f"You have passed {batch_size} text prompts (`prompt`), but only {init_latents.shape[0]} initial" |
|
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note" |
|
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update" |
|
" your script to pass as many initial images as text prompts to suppress this warning." |
|
) |
|
deprecate( |
|
"len(prompt) != len(image)", |
|
"1.0.0", |
|
deprecation_message, |
|
standard_warn=False, |
|
) |
|
additional_image_per_prompt = batch_size // init_latents.shape[0] |
|
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) |
|
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: |
|
raise ValueError( |
|
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." |
|
) |
|
else: |
|
init_latents = torch.cat([init_latents], dim=0) |
|
|
|
shape = init_latents.shape |
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
|
|
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) |
|
latents = init_latents |
|
|
|
return latents |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def guidance_rescale(self): |
|
return self._guidance_rescale |
|
|
|
|
|
|
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@property |
|
def interrupt(self): |
|
return self._interrupt |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
image: PipelineImageInput = None, |
|
strength: float = 0.8, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: Optional[int] = 50, |
|
timesteps: List[int] = None, |
|
sigmas: List[float] = None, |
|
guidance_scale: Optional[float] = 5.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: Optional[float] = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
prompt_embeds_2: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds_2: Optional[torch.Tensor] = None, |
|
prompt_attention_mask: Optional[torch.Tensor] = None, |
|
prompt_attention_mask_2: Optional[torch.Tensor] = None, |
|
negative_prompt_attention_mask: Optional[torch.Tensor] = None, |
|
negative_prompt_attention_mask_2: Optional[torch.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback_on_step_end: Optional[ |
|
Union[ |
|
Callable[[int, int, Dict], None], |
|
PipelineCallback, |
|
MultiPipelineCallbacks, |
|
] |
|
] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
guidance_rescale: float = 0.0, |
|
original_size: Optional[Tuple[int, int]] = (1024, 1024), |
|
target_size: Optional[Tuple[int, int]] = None, |
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
use_resolution_binning: bool = True, |
|
map: PipelineImageInput = None, |
|
denoising_start: Optional[float] = None, |
|
): |
|
r""" |
|
The call function to the pipeline for generation with HunyuanDiT. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. |
|
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): |
|
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both |
|
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list |
|
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a |
|
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image |
|
latents as `image`, but if passing latents directly it is not encoded again. |
|
strength (`float`, *optional*, defaults to 0.8): |
|
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a |
|
starting point and more noise is added the higher the `strength`. The number of denoising steps depends |
|
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising |
|
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 |
|
essentially ignores `image`. |
|
height (`int`): |
|
The height in pixels of the generated image. |
|
width (`int`): |
|
The width in pixels of the generated image. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. This parameter is modulated by `strength`. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in |
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed |
|
will be used. |
|
guidance_scale (`float`, *optional*, defaults to 7.5): |
|
A higher guidance scale value encourages the model to generate images closely linked to the text |
|
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide what to not include in image generation. If not defined, you need to |
|
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies |
|
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make |
|
generation deterministic. |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
prompt_embeds_2 (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not |
|
provided, text embeddings are generated from the `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
negative_prompt_embeds_2 (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If |
|
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. |
|
prompt_attention_mask (`torch.Tensor`, *optional*): |
|
Attention mask for the prompt. Required when `prompt_embeds` is passed directly. |
|
prompt_attention_mask_2 (`torch.Tensor`, *optional*): |
|
Attention mask for the prompt. Required when `prompt_embeds_2` is passed directly. |
|
negative_prompt_attention_mask (`torch.Tensor`, *optional*): |
|
Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly. |
|
negative_prompt_attention_mask_2 (`torch.Tensor`, *optional*): |
|
Attention mask for the negative prompt. Required when `negative_prompt_embeds_2` is passed directly. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generated image. Choose between `PIL.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a |
|
plain tuple. |
|
callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): |
|
A callback function or a list of callback functions to be called at the end of each denoising step. |
|
callback_on_step_end_tensor_inputs (`List[str]`, *optional*): |
|
A list of tensor inputs that should be passed to the callback function. If not defined, all tensor |
|
inputs will be passed. |
|
guidance_rescale (`float`, *optional*, defaults to 0.0): |
|
Rescale the noise_cfg according to `guidance_rescale`. Based on findings of [Common Diffusion Noise |
|
Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 |
|
original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`): |
|
The original size of the image. Used to calculate the time ids. |
|
target_size (`Tuple[int, int]`, *optional*): |
|
The target size of the image. Used to calculate the time ids. |
|
crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`): |
|
The top left coordinates of the crop. Used to calculate the time ids. |
|
use_resolution_binning (`bool`, *optional*, defaults to `True`): |
|
Whether to use resolution binning or not. If `True`, the input resolution will be mapped to the closest |
|
standard resolution. Supported resolutions are 1024x1024, 1280x1280, 1024x768, 1152x864, 1280x960, |
|
768x1024, 864x1152, 960x1280, 1280x768, and 768x1280. It is recommended to set this to `True`. |
|
denoising_start (`float`, *optional*): |
|
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be |
|
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and |
|
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified, |
|
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline |
|
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image |
|
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output). |
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: |
|
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, |
|
otherwise a `tuple` is returned where the first element is a list with the generated images and the |
|
second element is a list of `bool`s indicating whether the corresponding generated image contains |
|
"not-safe-for-work" (nsfw) content. |
|
""" |
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): |
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs |
|
|
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
height = int((height // 16) * 16) |
|
width = int((width // 16) * 16) |
|
|
|
if use_resolution_binning and (height, width) not in SUPPORTED_SHAPE: |
|
width, height = map_to_standard_shapes(width, height) |
|
height = int(height) |
|
width = int(width) |
|
logger.warning(f"Reshaped to (height, width)=({height}, {width}), Supported shapes are {SUPPORTED_SHAPE}") |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
height, |
|
width, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
prompt_attention_mask, |
|
negative_prompt_attention_mask, |
|
prompt_embeds_2, |
|
negative_prompt_embeds_2, |
|
prompt_attention_mask_2, |
|
negative_prompt_attention_mask_2, |
|
callback_on_step_end_tensor_inputs, |
|
) |
|
self._guidance_scale = guidance_scale |
|
self._guidance_rescale = guidance_rescale |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
prompt_attention_mask, |
|
negative_prompt_attention_mask, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
device=device, |
|
dtype=self.transformer.dtype, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
prompt_attention_mask=prompt_attention_mask, |
|
negative_prompt_attention_mask=negative_prompt_attention_mask, |
|
max_sequence_length=77, |
|
text_encoder_index=0, |
|
) |
|
( |
|
prompt_embeds_2, |
|
negative_prompt_embeds_2, |
|
prompt_attention_mask_2, |
|
negative_prompt_attention_mask_2, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
device=device, |
|
dtype=self.transformer.dtype, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
prompt_embeds=prompt_embeds_2, |
|
negative_prompt_embeds=negative_prompt_embeds_2, |
|
prompt_attention_mask=prompt_attention_mask_2, |
|
negative_prompt_attention_mask=negative_prompt_attention_mask_2, |
|
max_sequence_length=256, |
|
text_encoder_index=1, |
|
) |
|
|
|
|
|
init_image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) |
|
map = self.mask_processor.preprocess( |
|
map, |
|
height=height // self.vae_scale_factor, |
|
width=width // self.vae_scale_factor, |
|
).to(device) |
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, num_inference_steps, device, timesteps, sigmas |
|
) |
|
|
|
|
|
total_time_steps = num_inference_steps |
|
|
|
|
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) |
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
init_image, |
|
latent_timestep, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
grid_height = height // 8 // self.transformer.config.patch_size |
|
grid_width = width // 8 // self.transformer.config.patch_size |
|
base_size = 512 // 8 // self.transformer.config.patch_size |
|
grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size) |
|
image_rotary_emb = get_2d_rotary_pos_embed( |
|
self.transformer.inner_dim // self.transformer.num_heads, |
|
grid_crops_coords, |
|
(grid_height, grid_width), |
|
) |
|
|
|
style = torch.tensor([0], device=device) |
|
|
|
target_size = target_size or (height, width) |
|
add_time_ids = list(original_size + target_size + crops_coords_top_left) |
|
add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype) |
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask]) |
|
prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2]) |
|
prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2]) |
|
add_time_ids = torch.cat([add_time_ids] * 2, dim=0) |
|
style = torch.cat([style] * 2, dim=0) |
|
|
|
prompt_embeds = prompt_embeds.to(device=device) |
|
prompt_attention_mask = prompt_attention_mask.to(device=device) |
|
prompt_embeds_2 = prompt_embeds_2.to(device=device) |
|
prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device) |
|
add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype, device=device).repeat( |
|
batch_size * num_images_per_prompt, 1 |
|
) |
|
style = style.to(device=device).repeat(batch_size * num_images_per_prompt) |
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
|
|
original_with_noise = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
init_image, |
|
timesteps, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
) |
|
thresholds = torch.arange(total_time_steps, dtype=map.dtype) / total_time_steps |
|
thresholds = thresholds.unsqueeze(1).unsqueeze(1).to(device) |
|
masks = map.squeeze() > (thresholds + (denoising_start or 0)) |
|
|
|
self._num_timesteps = len(timesteps) |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
if i == 0 and denoising_start is None: |
|
latents = original_with_noise[:1] |
|
else: |
|
mask = masks[i].unsqueeze(0).to(latents.dtype) |
|
mask = mask.unsqueeze(1) |
|
latents = original_with_noise[i] * mask + latents * (1 - mask) |
|
|
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to( |
|
dtype=latent_model_input.dtype |
|
) |
|
|
|
|
|
noise_pred = self.transformer( |
|
latent_model_input, |
|
t_expand, |
|
encoder_hidden_states=prompt_embeds, |
|
text_embedding_mask=prompt_attention_mask, |
|
encoder_hidden_states_t5=prompt_embeds_2, |
|
text_embedding_mask_t5=prompt_attention_mask_2, |
|
image_meta_size=add_time_ids, |
|
style=style, |
|
image_rotary_emb=image_rotary_emb, |
|
return_dict=False, |
|
)[0] |
|
|
|
noise_pred, _ = noise_pred.chunk(2, dim=1) |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if self.do_classifier_free_guidance and guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2) |
|
negative_prompt_embeds_2 = callback_outputs.pop( |
|
"negative_prompt_embeds_2", negative_prompt_embeds_2 |
|
) |
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
if XLA_AVAILABLE: |
|
xm.mark_step() |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|