|
import inspect |
|
import os |
|
import random |
|
import warnings |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import matplotlib.pyplot as plt |
|
import torch |
|
import torch.nn.functional as F |
|
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer |
|
|
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.loaders import ( |
|
FromSingleFileMixin, |
|
LoraLoaderMixin, |
|
TextualInversionLoaderMixin, |
|
) |
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel |
|
from diffusers.models.attention_processor import ( |
|
AttnProcessor2_0, |
|
LoRAAttnProcessor2_0, |
|
LoRAXFormersAttnProcessor, |
|
XFormersAttnProcessor, |
|
) |
|
from diffusers.models.lora import adjust_lora_scale_text_encoder |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import ( |
|
is_accelerate_available, |
|
is_accelerate_version, |
|
is_invisible_watermark_available, |
|
logging, |
|
replace_example_docstring, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
if is_invisible_watermark_available(): |
|
from diffusers.pipelines.stable_diffusion_xl.watermark import ( |
|
StableDiffusionXLWatermarker, |
|
) |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
>>> import torch |
|
>>> from diffusers import StableDiffusionXLPipeline |
|
|
|
>>> pipe = StableDiffusionXLPipeline.from_pretrained( |
|
... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 |
|
... ) |
|
>>> pipe = pipe.to("cuda") |
|
|
|
>>> prompt = "a photo of an astronaut riding a horse on mars" |
|
>>> image = pipe(prompt).images[0] |
|
``` |
|
""" |
|
|
|
|
|
def gaussian_kernel(kernel_size=3, sigma=1.0, channels=3): |
|
x_coord = torch.arange(kernel_size) |
|
gaussian_1d = torch.exp(-((x_coord - (kernel_size - 1) / 2) ** 2) / (2 * sigma**2)) |
|
gaussian_1d = gaussian_1d / gaussian_1d.sum() |
|
gaussian_2d = gaussian_1d[:, None] * gaussian_1d[None, :] |
|
kernel = gaussian_2d[None, None, :, :].repeat(channels, 1, 1, 1) |
|
|
|
return kernel |
|
|
|
|
|
def gaussian_filter(latents, kernel_size=3, sigma=1.0): |
|
channels = latents.shape[1] |
|
kernel = gaussian_kernel(kernel_size, sigma, channels).to(latents.device, latents.dtype) |
|
blurred_latents = F.conv2d(latents, kernel, padding=kernel_size // 2, groups=channels) |
|
|
|
return blurred_latents |
|
|
|
|
|
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): |
|
""" |
|
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 |
|
""" |
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) |
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) |
|
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) |
|
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg |
|
return noise_cfg |
|
|
|
|
|
class DemoFusionSDXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin): |
|
r""" |
|
Pipeline for text-to-image generation using Stable Diffusion XL. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
|
|
|
In addition the pipeline inherits the following loading methods: |
|
- *LoRA*: [`StableDiffusionXLPipeline.load_lora_weights`] |
|
- *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`] |
|
|
|
as well as the following saving methods: |
|
- *LoRA*: [`loaders.StableDiffusionXLPipeline.save_lora_weights`] |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion XL uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
text_encoder_2 ([` CLIPTextModelWithProjection`]): |
|
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), |
|
specifically the |
|
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) |
|
variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
tokenizer_2 (`CLIPTokenizer`): |
|
Second Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): |
|
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of |
|
`stabilityai/stable-diffusion-xl-base-1-0`. |
|
add_watermarker (`bool`, *optional*): |
|
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to |
|
watermark output images. If not defined, it will default to True if the package is installed, otherwise no |
|
watermarker will be used. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->unet->vae" |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
text_encoder_2: CLIPTextModelWithProjection, |
|
tokenizer: CLIPTokenizer, |
|
tokenizer_2: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
force_zeros_for_empty_prompt: bool = True, |
|
add_watermarker: Optional[bool] = None, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
text_encoder_2=text_encoder_2, |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
unet=unet, |
|
scheduler=scheduler, |
|
) |
|
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.default_sample_size = self.unet.config.sample_size |
|
|
|
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() |
|
|
|
if add_watermarker: |
|
self.watermark = StableDiffusionXLWatermarker() |
|
else: |
|
self.watermark = None |
|
|
|
|
|
def enable_vae_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.vae.enable_slicing() |
|
|
|
|
|
def disable_vae_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_slicing() |
|
|
|
|
|
def enable_vae_tiling(self): |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger images. |
|
""" |
|
self.vae.enable_tiling() |
|
|
|
|
|
def disable_vae_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.vae.disable_tiling() |
|
|
|
def encode_prompt( |
|
self, |
|
prompt: str, |
|
prompt_2: Optional[str] = None, |
|
device: Optional[torch.device] = None, |
|
num_images_per_prompt: int = 1, |
|
do_classifier_free_guidance: bool = True, |
|
negative_prompt: Optional[str] = None, |
|
negative_prompt_2: Optional[str] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
lora_scale: Optional[float] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in both text-encoders |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
lora_scale (`float`, *optional*): |
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
""" |
|
device = device or self._execution_device |
|
|
|
|
|
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
|
|
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) |
|
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] |
|
text_encoders = ( |
|
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] |
|
) |
|
|
|
if prompt_embeds is None: |
|
prompt_2 = prompt_2 or prompt |
|
|
|
prompt_embeds_list = [] |
|
prompts = [prompt, prompt_2] |
|
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): |
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, tokenizer) |
|
|
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = text_encoder( |
|
text_input_ids.to(device), |
|
output_hidden_states=True, |
|
) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
|
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
|
|
|
|
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt |
|
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: |
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds) |
|
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) |
|
elif do_classifier_free_guidance and negative_prompt_embeds is None: |
|
negative_prompt = negative_prompt or "" |
|
negative_prompt_2 = negative_prompt_2 or negative_prompt |
|
|
|
uncond_tokens: List[str] |
|
if prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt, negative_prompt_2] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = [negative_prompt, negative_prompt_2] |
|
|
|
negative_prompt_embeds_list = [] |
|
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): |
|
if isinstance(self, TextualInversionLoaderMixin): |
|
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = tokenizer( |
|
negative_prompt, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
negative_prompt_embeds = text_encoder( |
|
uncond_input.input_ids.to(device), |
|
output_hidden_states=True, |
|
) |
|
|
|
negative_pooled_prompt_embeds = negative_prompt_embeds[0] |
|
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] |
|
|
|
negative_prompt_embeds_list.append(negative_prompt_embeds) |
|
|
|
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
if do_classifier_free_guidance: |
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
|
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt=None, |
|
negative_prompt_2=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
pooled_prompt_embeds=None, |
|
negative_pooled_prompt_embeds=None, |
|
num_images_per_prompt=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if (callback_steps is None) or ( |
|
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) |
|
): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt_2 is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): |
|
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
elif negative_prompt_2 is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." |
|
) |
|
|
|
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." |
|
) |
|
|
|
|
|
if max(height, width) % 1024 != 0: |
|
raise ValueError( |
|
f"the larger one of `height` and `width` has to be divisible by 1024 but are {height} and {width}." |
|
) |
|
|
|
if num_images_per_prompt != 1: |
|
warnings.warn("num_images_per_prompt != 1 is not supported by DemoFusion and will be ignored.") |
|
num_images_per_prompt = 1 |
|
|
|
|
|
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): |
|
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype): |
|
add_time_ids = list(original_size + crops_coords_top_left + target_size) |
|
|
|
passed_add_embed_dim = ( |
|
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim |
|
) |
|
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features |
|
|
|
if expected_add_embed_dim != passed_add_embed_dim: |
|
raise ValueError( |
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." |
|
) |
|
|
|
add_time_ids = torch.tensor([add_time_ids], dtype=dtype) |
|
return add_time_ids |
|
|
|
def get_views(self, height, width, window_size=128, stride=64, random_jitter=False): |
|
height //= self.vae_scale_factor |
|
width //= self.vae_scale_factor |
|
num_blocks_height = int((height - window_size) / stride - 1e-6) + 2 if height > window_size else 1 |
|
num_blocks_width = int((width - window_size) / stride - 1e-6) + 2 if width > window_size else 1 |
|
total_num_blocks = int(num_blocks_height * num_blocks_width) |
|
views = [] |
|
for i in range(total_num_blocks): |
|
h_start = int((i // num_blocks_width) * stride) |
|
h_end = h_start + window_size |
|
w_start = int((i % num_blocks_width) * stride) |
|
w_end = w_start + window_size |
|
|
|
if h_end > height: |
|
h_start = int(h_start + height - h_end) |
|
h_end = int(height) |
|
if w_end > width: |
|
w_start = int(w_start + width - w_end) |
|
w_end = int(width) |
|
if h_start < 0: |
|
h_end = int(h_end - h_start) |
|
h_start = 0 |
|
if w_start < 0: |
|
w_end = int(w_end - w_start) |
|
w_start = 0 |
|
|
|
if random_jitter: |
|
jitter_range = (window_size - stride) // 4 |
|
w_jitter = 0 |
|
h_jitter = 0 |
|
if (w_start != 0) and (w_end != width): |
|
w_jitter = random.randint(-jitter_range, jitter_range) |
|
elif (w_start == 0) and (w_end != width): |
|
w_jitter = random.randint(-jitter_range, 0) |
|
elif (w_start != 0) and (w_end == width): |
|
w_jitter = random.randint(0, jitter_range) |
|
if (h_start != 0) and (h_end != height): |
|
h_jitter = random.randint(-jitter_range, jitter_range) |
|
elif (h_start == 0) and (h_end != height): |
|
h_jitter = random.randint(-jitter_range, 0) |
|
elif (h_start != 0) and (h_end == height): |
|
h_jitter = random.randint(0, jitter_range) |
|
h_start += h_jitter + jitter_range |
|
h_end += h_jitter + jitter_range |
|
w_start += w_jitter + jitter_range |
|
w_end += w_jitter + jitter_range |
|
|
|
views.append((h_start, h_end, w_start, w_end)) |
|
return views |
|
|
|
def tiled_decode(self, latents, current_height, current_width): |
|
core_size = self.unet.config.sample_size // 4 |
|
core_stride = core_size |
|
pad_size = self.unet.config.sample_size // 4 * 3 |
|
decoder_view_batch_size = 1 |
|
|
|
views = self.get_views(current_height, current_width, stride=core_stride, window_size=core_size) |
|
views_batch = [views[i : i + decoder_view_batch_size] for i in range(0, len(views), decoder_view_batch_size)] |
|
latents_ = F.pad(latents, (pad_size, pad_size, pad_size, pad_size), "constant", 0) |
|
image = torch.zeros(latents.size(0), 3, current_height, current_width).to(latents.device) |
|
count = torch.zeros_like(image).to(latents.device) |
|
|
|
with self.progress_bar(total=len(views_batch)) as progress_bar: |
|
for j, batch_view in enumerate(views_batch): |
|
len(batch_view) |
|
latents_for_view = torch.cat( |
|
[ |
|
latents_[:, :, h_start : h_end + pad_size * 2, w_start : w_end + pad_size * 2] |
|
for h_start, h_end, w_start, w_end in batch_view |
|
] |
|
) |
|
image_patch = self.vae.decode(latents_for_view / self.vae.config.scaling_factor, return_dict=False)[0] |
|
h_start, h_end, w_start, w_end = views[j] |
|
h_start, h_end, w_start, w_end = ( |
|
h_start * self.vae_scale_factor, |
|
h_end * self.vae_scale_factor, |
|
w_start * self.vae_scale_factor, |
|
w_end * self.vae_scale_factor, |
|
) |
|
p_h_start, p_h_end, p_w_start, p_w_end = ( |
|
pad_size * self.vae_scale_factor, |
|
image_patch.size(2) - pad_size * self.vae_scale_factor, |
|
pad_size * self.vae_scale_factor, |
|
image_patch.size(3) - pad_size * self.vae_scale_factor, |
|
) |
|
image[:, :, h_start:h_end, w_start:w_end] += image_patch[:, :, p_h_start:p_h_end, p_w_start:p_w_end] |
|
count[:, :, h_start:h_end, w_start:w_end] += 1 |
|
progress_bar.update() |
|
image = image / count |
|
|
|
return image |
|
|
|
|
|
def upcast_vae(self): |
|
dtype = self.vae.dtype |
|
self.vae.to(dtype=torch.float32) |
|
use_torch_2_0_or_xformers = isinstance( |
|
self.vae.decoder.mid_block.attentions[0].processor, |
|
( |
|
AttnProcessor2_0, |
|
XFormersAttnProcessor, |
|
LoRAXFormersAttnProcessor, |
|
LoRAAttnProcessor2_0, |
|
), |
|
) |
|
|
|
|
|
if use_torch_2_0_or_xformers: |
|
self.vae.post_quant_conv.to(dtype) |
|
self.vae.decoder.conv_in.to(dtype) |
|
self.vae.decoder.mid_block.to(dtype) |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
denoising_end: Optional[float] = None, |
|
guidance_scale: float = 5.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = False, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
original_size: Optional[Tuple[int, int]] = None, |
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
target_size: Optional[Tuple[int, int]] = None, |
|
negative_original_size: Optional[Tuple[int, int]] = None, |
|
negative_crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
negative_target_size: Optional[Tuple[int, int]] = None, |
|
|
|
view_batch_size: int = 16, |
|
multi_decoder: bool = True, |
|
stride: Optional[int] = 64, |
|
cosine_scale_1: Optional[float] = 3.0, |
|
cosine_scale_2: Optional[float] = 1.0, |
|
cosine_scale_3: Optional[float] = 1.0, |
|
sigma: Optional[float] = 0.8, |
|
show_image: bool = False, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in both text-encoders |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. This is set to 1024 by default for the best results. |
|
Anything below 512 pixels won't work well for |
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) |
|
and checkpoints that are not specifically fine-tuned on low resolutions. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. This is set to 1024 by default for the best results. |
|
Anything below 512 pixels won't work well for |
|
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) |
|
and checkpoints that are not specifically fine-tuned on low resolutions. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
denoising_end (`float`, *optional*): |
|
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be |
|
completed before it is intentionally prematurely terminated. As a result, the returned sample will |
|
still retain a substantial amount of noise as determined by the discrete timesteps selected by the |
|
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a |
|
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image |
|
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) |
|
guidance_scale (`float`, *optional*, defaults to 5.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead |
|
of a plain tuple. |
|
callback (`Callable`, *optional*): |
|
A function that will be called every `callback_steps` steps during inference. The function will be |
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. |
|
callback_steps (`int`, *optional*, defaults to 1): |
|
The frequency at which the `callback` function will be called. If not specified, the callback will be |
|
called at every step. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
guidance_rescale (`float`, *optional*, defaults to 0.7): |
|
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are |
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of |
|
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). |
|
Guidance rescale factor should fix overexposure when using zero terminal SNR. |
|
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. |
|
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as |
|
explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position |
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting |
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If |
|
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in |
|
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
To negatively condition the generation process based on a specific image resolution. Part of SDXL's |
|
micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's |
|
micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
To negatively condition the generation process based on a target image resolution. It should be as same |
|
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more |
|
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. |
|
################### DemoFusion specific parameters #################### |
|
view_batch_size (`int`, defaults to 16): |
|
The batch size for multiple denoising paths. Typically, a larger batch size can result in higher |
|
efficiency but comes with increased GPU memory requirements. |
|
multi_decoder (`bool`, defaults to True): |
|
Determine whether to use a tiled decoder. Generally, when the resolution exceeds 3072x3072, |
|
a tiled decoder becomes necessary. |
|
stride (`int`, defaults to 64): |
|
The stride of moving local patches. A smaller stride is better for alleviating seam issues, |
|
but it also introduces additional computational overhead and inference time. |
|
cosine_scale_1 (`float`, defaults to 3): |
|
Control the strength of skip-residual. For specific impacts, please refer to Appendix C |
|
in the DemoFusion paper. |
|
cosine_scale_2 (`float`, defaults to 1): |
|
Control the strength of dilated sampling. For specific impacts, please refer to Appendix C |
|
in the DemoFusion paper. |
|
cosine_scale_3 (`float`, defaults to 1): |
|
Control the strength of the gaussion filter. For specific impacts, please refer to Appendix C |
|
in the DemoFusion paper. |
|
sigma (`float`, defaults to 1): |
|
The standerd value of the gaussian filter. |
|
show_image (`bool`, defaults to False): |
|
Determine whether to show intermediate results during generation. |
|
|
|
Examples: |
|
|
|
Returns: |
|
a `list` with the generated images at each phase. |
|
""" |
|
|
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
x1_size = self.default_sample_size * self.vae_scale_factor |
|
|
|
height_scale = height / x1_size |
|
width_scale = width / x1_size |
|
scale_num = int(max(height_scale, width_scale)) |
|
aspect_ratio = min(height_scale, width_scale) / max(height_scale, width_scale) |
|
|
|
original_size = original_size or (height, width) |
|
target_size = target_size or (height, width) |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt, |
|
negative_prompt_2, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
num_images_per_prompt, |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
) |
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
|
|
timesteps = self.scheduler.timesteps |
|
|
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height // scale_num, |
|
width // scale_num, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
add_text_embeds = pooled_prompt_embeds |
|
add_time_ids = self._get_add_time_ids( |
|
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype |
|
) |
|
if negative_original_size is not None and negative_target_size is not None: |
|
negative_add_time_ids = self._get_add_time_ids( |
|
negative_original_size, |
|
negative_crops_coords_top_left, |
|
negative_target_size, |
|
dtype=prompt_embeds.dtype, |
|
) |
|
else: |
|
negative_add_time_ids = add_time_ids |
|
|
|
if do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) |
|
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) |
|
|
|
prompt_embeds = prompt_embeds.to(device) |
|
add_text_embeds = add_text_embeds.to(device) |
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) |
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
|
|
|
|
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1: |
|
discrete_timestep_cutoff = int( |
|
round( |
|
self.scheduler.config.num_train_timesteps |
|
- (denoising_end * self.scheduler.config.num_train_timesteps) |
|
) |
|
) |
|
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) |
|
timesteps = timesteps[:num_inference_steps] |
|
|
|
output_images = [] |
|
|
|
|
|
|
|
print("### Phase 1 Denoising ###") |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
latents_for_view = latents |
|
|
|
|
|
latent_model_input = latents.repeat_interleave(2, dim=0) if do_classifier_free_guidance else latents |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} |
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2] |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
anchor_mean = latents.mean() |
|
anchor_std = latents.std() |
|
if not output_type == "latent": |
|
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
|
|
if needs_upcasting: |
|
self.upcast_vae() |
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) |
|
print("### Phase 1 Decoding ###") |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
|
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
if show_image: |
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(image[0]) |
|
plt.axis("off") |
|
plt.show() |
|
output_images.append(image[0]) |
|
|
|
|
|
|
|
for current_scale_num in range(2, scale_num + 1): |
|
print("### Phase {} Denoising ###".format(current_scale_num)) |
|
current_height = self.unet.config.sample_size * self.vae_scale_factor * current_scale_num |
|
current_width = self.unet.config.sample_size * self.vae_scale_factor * current_scale_num |
|
if height > width: |
|
current_width = int(current_width * aspect_ratio) |
|
else: |
|
current_height = int(current_height * aspect_ratio) |
|
|
|
latents = F.interpolate( |
|
latents, |
|
size=(int(current_height / self.vae_scale_factor), int(current_width / self.vae_scale_factor)), |
|
mode="bicubic", |
|
) |
|
|
|
noise_latents = [] |
|
noise = torch.randn_like(latents) |
|
for timestep in timesteps: |
|
noise_latent = self.scheduler.add_noise(latents, noise, timestep.unsqueeze(0)) |
|
noise_latents.append(noise_latent) |
|
latents = noise_latents[0] |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
count = torch.zeros_like(latents) |
|
value = torch.zeros_like(latents) |
|
cosine_factor = ( |
|
0.5 |
|
* ( |
|
1 |
|
+ torch.cos( |
|
torch.pi |
|
* (self.scheduler.config.num_train_timesteps - t) |
|
/ self.scheduler.config.num_train_timesteps |
|
) |
|
).cpu() |
|
) |
|
|
|
c1 = cosine_factor**cosine_scale_1 |
|
latents = latents * (1 - c1) + noise_latents[i] * c1 |
|
|
|
|
|
|
|
views = self.get_views( |
|
current_height, |
|
current_width, |
|
stride=stride, |
|
window_size=self.unet.config.sample_size, |
|
random_jitter=True, |
|
) |
|
views_batch = [views[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)] |
|
|
|
jitter_range = (self.unet.config.sample_size - stride) // 4 |
|
latents_ = F.pad(latents, (jitter_range, jitter_range, jitter_range, jitter_range), "constant", 0) |
|
|
|
count_local = torch.zeros_like(latents_) |
|
value_local = torch.zeros_like(latents_) |
|
|
|
for j, batch_view in enumerate(views_batch): |
|
vb_size = len(batch_view) |
|
|
|
|
|
latents_for_view = torch.cat( |
|
[ |
|
latents_[:, :, h_start:h_end, w_start:w_end] |
|
for h_start, h_end, w_start, w_end in batch_view |
|
] |
|
) |
|
|
|
|
|
latent_model_input = latents_for_view |
|
latent_model_input = ( |
|
latent_model_input.repeat_interleave(2, dim=0) |
|
if do_classifier_free_guidance |
|
else latent_model_input |
|
) |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
prompt_embeds_input = torch.cat([prompt_embeds] * vb_size) |
|
add_text_embeds_input = torch.cat([add_text_embeds] * vb_size) |
|
add_time_ids_input = [] |
|
for h_start, h_end, w_start, w_end in batch_view: |
|
add_time_ids_ = add_time_ids.clone() |
|
add_time_ids_[:, 2] = h_start * self.vae_scale_factor |
|
add_time_ids_[:, 3] = w_start * self.vae_scale_factor |
|
add_time_ids_input.append(add_time_ids_) |
|
add_time_ids_input = torch.cat(add_time_ids_input) |
|
|
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds_input, "time_ids": add_time_ids_input} |
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds_input, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2] |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg( |
|
noise_pred, noise_pred_text, guidance_rescale=guidance_rescale |
|
) |
|
|
|
|
|
self.scheduler._init_step_index(t) |
|
latents_denoised_batch = self.scheduler.step( |
|
noise_pred, t, latents_for_view, **extra_step_kwargs, return_dict=False |
|
)[0] |
|
|
|
|
|
for latents_view_denoised, (h_start, h_end, w_start, w_end) in zip( |
|
latents_denoised_batch.chunk(vb_size), batch_view |
|
): |
|
value_local[:, :, h_start:h_end, w_start:w_end] += latents_view_denoised |
|
count_local[:, :, h_start:h_end, w_start:w_end] += 1 |
|
|
|
value_local = value_local[ |
|
:, |
|
:, |
|
jitter_range : jitter_range + current_height // self.vae_scale_factor, |
|
jitter_range : jitter_range + current_width // self.vae_scale_factor, |
|
] |
|
count_local = count_local[ |
|
:, |
|
:, |
|
jitter_range : jitter_range + current_height // self.vae_scale_factor, |
|
jitter_range : jitter_range + current_width // self.vae_scale_factor, |
|
] |
|
|
|
c2 = cosine_factor**cosine_scale_2 |
|
|
|
value += value_local / count_local * (1 - c2) |
|
count += torch.ones_like(value_local) * (1 - c2) |
|
|
|
|
|
|
|
views = [[h, w] for h in range(current_scale_num) for w in range(current_scale_num)] |
|
views_batch = [views[i : i + view_batch_size] for i in range(0, len(views), view_batch_size)] |
|
|
|
h_pad = (current_scale_num - (latents.size(2) % current_scale_num)) % current_scale_num |
|
w_pad = (current_scale_num - (latents.size(3) % current_scale_num)) % current_scale_num |
|
latents_ = F.pad(latents, (w_pad, 0, h_pad, 0), "constant", 0) |
|
|
|
count_global = torch.zeros_like(latents_) |
|
value_global = torch.zeros_like(latents_) |
|
|
|
c3 = 0.99 * cosine_factor**cosine_scale_3 + 1e-2 |
|
std_, mean_ = latents_.std(), latents_.mean() |
|
latents_gaussian = gaussian_filter( |
|
latents_, kernel_size=(2 * current_scale_num - 1), sigma=sigma * c3 |
|
) |
|
latents_gaussian = ( |
|
latents_gaussian - latents_gaussian.mean() |
|
) / latents_gaussian.std() * std_ + mean_ |
|
|
|
for j, batch_view in enumerate(views_batch): |
|
latents_for_view = torch.cat( |
|
[latents_[:, :, h::current_scale_num, w::current_scale_num] for h, w in batch_view] |
|
) |
|
latents_for_view_gaussian = torch.cat( |
|
[latents_gaussian[:, :, h::current_scale_num, w::current_scale_num] for h, w in batch_view] |
|
) |
|
|
|
vb_size = latents_for_view.size(0) |
|
|
|
|
|
latent_model_input = latents_for_view_gaussian |
|
latent_model_input = ( |
|
latent_model_input.repeat_interleave(2, dim=0) |
|
if do_classifier_free_guidance |
|
else latent_model_input |
|
) |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
prompt_embeds_input = torch.cat([prompt_embeds] * vb_size) |
|
add_text_embeds_input = torch.cat([add_text_embeds] * vb_size) |
|
add_time_ids_input = torch.cat([add_time_ids] * vb_size) |
|
|
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds_input, "time_ids": add_time_ids_input} |
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds_input, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred[::2], noise_pred[1::2] |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg( |
|
noise_pred, noise_pred_text, guidance_rescale=guidance_rescale |
|
) |
|
|
|
|
|
self.scheduler._init_step_index(t) |
|
latents_denoised_batch = self.scheduler.step( |
|
noise_pred, t, latents_for_view, **extra_step_kwargs, return_dict=False |
|
)[0] |
|
|
|
|
|
for latents_view_denoised, (h, w) in zip(latents_denoised_batch.chunk(vb_size), batch_view): |
|
value_global[:, :, h::current_scale_num, w::current_scale_num] += latents_view_denoised |
|
count_global[:, :, h::current_scale_num, w::current_scale_num] += 1 |
|
|
|
c2 = cosine_factor**cosine_scale_2 |
|
|
|
value_global = value_global[:, :, h_pad:, w_pad:] |
|
|
|
value += value_global * c2 |
|
count += torch.ones_like(value_global) * c2 |
|
|
|
|
|
|
|
latents = torch.where(count > 0, value / count, value) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
|
|
|
|
latents = (latents - latents.mean()) / latents.std() * anchor_std + anchor_mean |
|
if not output_type == "latent": |
|
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
|
|
if needs_upcasting: |
|
self.upcast_vae() |
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) |
|
|
|
print("### Phase {} Decoding ###".format(current_scale_num)) |
|
if multi_decoder: |
|
image = self.tiled_decode(latents, current_height, current_width) |
|
else: |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
|
|
|
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
else: |
|
image = latents |
|
|
|
if not output_type == "latent": |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
if show_image: |
|
plt.figure(figsize=(10, 10)) |
|
plt.imshow(image[0]) |
|
plt.axis("off") |
|
plt.show() |
|
output_images.append(image[0]) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
return output_images |
|
|
|
|
|
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): |
|
|
|
|
|
|
|
|
|
|
|
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): |
|
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module |
|
else: |
|
raise ImportError("Offloading requires `accelerate v0.17.0` or higher.") |
|
|
|
is_model_cpu_offload = False |
|
is_sequential_cpu_offload = False |
|
recursive = False |
|
for _, component in self.components.items(): |
|
if isinstance(component, torch.nn.Module): |
|
if hasattr(component, "_hf_hook"): |
|
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload) |
|
is_sequential_cpu_offload = isinstance(getattr(component, "_hf_hook"), AlignDevicesHook) |
|
logger.info( |
|
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again." |
|
) |
|
recursive = is_sequential_cpu_offload |
|
remove_hook_from_module(component, recurse=recursive) |
|
state_dict, network_alphas = self.lora_state_dict( |
|
pretrained_model_name_or_path_or_dict, |
|
unet_config=self.unet.config, |
|
**kwargs, |
|
) |
|
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet) |
|
|
|
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} |
|
if len(text_encoder_state_dict) > 0: |
|
self.load_lora_into_text_encoder( |
|
text_encoder_state_dict, |
|
network_alphas=network_alphas, |
|
text_encoder=self.text_encoder, |
|
prefix="text_encoder", |
|
lora_scale=self.lora_scale, |
|
) |
|
|
|
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} |
|
if len(text_encoder_2_state_dict) > 0: |
|
self.load_lora_into_text_encoder( |
|
text_encoder_2_state_dict, |
|
network_alphas=network_alphas, |
|
text_encoder=self.text_encoder_2, |
|
prefix="text_encoder_2", |
|
lora_scale=self.lora_scale, |
|
) |
|
|
|
|
|
if is_model_cpu_offload: |
|
self.enable_model_cpu_offload() |
|
elif is_sequential_cpu_offload: |
|
self.enable_sequential_cpu_offload() |
|
|
|
@classmethod |
|
def save_lora_weights( |
|
self, |
|
save_directory: Union[str, os.PathLike], |
|
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, |
|
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, |
|
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, |
|
is_main_process: bool = True, |
|
weight_name: str = None, |
|
save_function: Callable = None, |
|
safe_serialization: bool = True, |
|
): |
|
state_dict = {} |
|
|
|
def pack_weights(layers, prefix): |
|
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers |
|
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()} |
|
return layers_state_dict |
|
|
|
if not (unet_lora_layers or text_encoder_lora_layers or text_encoder_2_lora_layers): |
|
raise ValueError( |
|
"You must pass at least one of `unet_lora_layers`, `text_encoder_lora_layers` or `text_encoder_2_lora_layers`." |
|
) |
|
|
|
if unet_lora_layers: |
|
state_dict.update(pack_weights(unet_lora_layers, "unet")) |
|
|
|
if text_encoder_lora_layers and text_encoder_2_lora_layers: |
|
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder")) |
|
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) |
|
|
|
self.write_lora_layers( |
|
state_dict=state_dict, |
|
save_directory=save_directory, |
|
is_main_process=is_main_process, |
|
weight_name=weight_name, |
|
save_function=save_function, |
|
safe_serialization=safe_serialization, |
|
) |
|
|
|
def _remove_text_encoder_monkey_patch(self): |
|
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder) |
|
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2) |
|
|