|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
import os |
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
from PIL import Image |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPTextModel, |
|
CLIPTextModelWithProjection, |
|
CLIPTokenizer, |
|
CLIPVisionModelWithProjection, |
|
) |
|
|
|
from diffusers import DiffusionPipeline, StableDiffusionXLPipeline |
|
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor |
|
from diffusers.loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin |
|
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel |
|
from diffusers.models.attention_processor import ( |
|
AttnProcessor2_0, |
|
LoRAAttnProcessor2_0, |
|
LoRAXFormersAttnProcessor, |
|
XFormersAttnProcessor, |
|
) |
|
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin |
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput |
|
from diffusers.schedulers import KarrasDiffusionSchedulers |
|
from diffusers.utils import ( |
|
deprecate, |
|
is_accelerate_available, |
|
is_accelerate_version, |
|
is_invisible_watermark_available, |
|
logging, |
|
replace_example_docstring, |
|
) |
|
from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
|
if is_invisible_watermark_available(): |
|
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker |
|
|
|
|
|
def parse_prompt_attention(text): |
|
""" |
|
Parses a string with attention tokens and returns a list of pairs: text and its associated weight. |
|
Accepted tokens are: |
|
(abc) - increases attention to abc by a multiplier of 1.1 |
|
(abc:3.12) - increases attention to abc by a multiplier of 3.12 |
|
[abc] - decreases attention to abc by a multiplier of 1.1 |
|
\\( - literal character '(' |
|
\\[ - literal character '[' |
|
\\) - literal character ')' |
|
\\] - literal character ']' |
|
\\ - literal character '\' |
|
anything else - just text |
|
|
|
>>> parse_prompt_attention('normal text') |
|
[['normal text', 1.0]] |
|
>>> parse_prompt_attention('an (important) word') |
|
[['an ', 1.0], ['important', 1.1], [' word', 1.0]] |
|
>>> parse_prompt_attention('(unbalanced') |
|
[['unbalanced', 1.1]] |
|
>>> parse_prompt_attention('\\(literal\\]') |
|
[['(literal]', 1.0]] |
|
>>> parse_prompt_attention('(unnecessary)(parens)') |
|
[['unnecessaryparens', 1.1]] |
|
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') |
|
[['a ', 1.0], |
|
['house', 1.5730000000000004], |
|
[' ', 1.1], |
|
['on', 1.0], |
|
[' a ', 1.1], |
|
['hill', 0.55], |
|
[', sun, ', 1.1], |
|
['sky', 1.4641000000000006], |
|
['.', 1.1]] |
|
""" |
|
import re |
|
|
|
re_attention = re.compile( |
|
r""" |
|
\\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)| |
|
\)|]|[^\\()\[\]:]+|: |
|
""", |
|
re.X, |
|
) |
|
|
|
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S) |
|
|
|
res = [] |
|
round_brackets = [] |
|
square_brackets = [] |
|
|
|
round_bracket_multiplier = 1.1 |
|
square_bracket_multiplier = 1 / 1.1 |
|
|
|
def multiply_range(start_position, multiplier): |
|
for p in range(start_position, len(res)): |
|
res[p][1] *= multiplier |
|
|
|
for m in re_attention.finditer(text): |
|
text = m.group(0) |
|
weight = m.group(1) |
|
|
|
if text.startswith("\\"): |
|
res.append([text[1:], 1.0]) |
|
elif text == "(": |
|
round_brackets.append(len(res)) |
|
elif text == "[": |
|
square_brackets.append(len(res)) |
|
elif weight is not None and len(round_brackets) > 0: |
|
multiply_range(round_brackets.pop(), float(weight)) |
|
elif text == ")" and len(round_brackets) > 0: |
|
multiply_range(round_brackets.pop(), round_bracket_multiplier) |
|
elif text == "]" and len(square_brackets) > 0: |
|
multiply_range(square_brackets.pop(), square_bracket_multiplier) |
|
else: |
|
parts = re.split(re_break, text) |
|
for i, part in enumerate(parts): |
|
if i > 0: |
|
res.append(["BREAK", -1]) |
|
res.append([part, 1.0]) |
|
|
|
for pos in round_brackets: |
|
multiply_range(pos, round_bracket_multiplier) |
|
|
|
for pos in square_brackets: |
|
multiply_range(pos, square_bracket_multiplier) |
|
|
|
if len(res) == 0: |
|
res = [["", 1.0]] |
|
|
|
|
|
i = 0 |
|
while i + 1 < len(res): |
|
if res[i][1] == res[i + 1][1]: |
|
res[i][0] += res[i + 1][0] |
|
res.pop(i + 1) |
|
else: |
|
i += 1 |
|
|
|
return res |
|
|
|
|
|
def get_prompts_tokens_with_weights(clip_tokenizer: CLIPTokenizer, prompt: str): |
|
""" |
|
Get prompt token ids and weights, this function works for both prompt and negative prompt |
|
|
|
Args: |
|
pipe (CLIPTokenizer) |
|
A CLIPTokenizer |
|
prompt (str) |
|
A prompt string with weights |
|
|
|
Returns: |
|
text_tokens (list) |
|
A list contains token ids |
|
text_weight (list) |
|
A list contains the correspondent weight of token ids |
|
|
|
Example: |
|
import torch |
|
from transformers import CLIPTokenizer |
|
|
|
clip_tokenizer = CLIPTokenizer.from_pretrained( |
|
"stablediffusionapi/deliberate-v2" |
|
, subfolder = "tokenizer" |
|
, dtype = torch.float16 |
|
) |
|
|
|
token_id_list, token_weight_list = get_prompts_tokens_with_weights( |
|
clip_tokenizer = clip_tokenizer |
|
,prompt = "a (red:1.5) cat"*70 |
|
) |
|
""" |
|
texts_and_weights = parse_prompt_attention(prompt) |
|
text_tokens, text_weights = [], [] |
|
for word, weight in texts_and_weights: |
|
|
|
token = clip_tokenizer(word, truncation=False).input_ids[1:-1] |
|
|
|
|
|
|
|
text_tokens = [*text_tokens, *token] |
|
|
|
|
|
|
|
chunk_weights = [weight] * len(token) |
|
|
|
|
|
text_weights = [*text_weights, *chunk_weights] |
|
return text_tokens, text_weights |
|
|
|
|
|
def group_tokens_and_weights(token_ids: list, weights: list, pad_last_block=False): |
|
""" |
|
Produce tokens and weights in groups and pad the missing tokens |
|
|
|
Args: |
|
token_ids (list) |
|
The token ids from tokenizer |
|
weights (list) |
|
The weights list from function get_prompts_tokens_with_weights |
|
pad_last_block (bool) |
|
Control if fill the last token list to 75 tokens with eos |
|
Returns: |
|
new_token_ids (2d list) |
|
new_weights (2d list) |
|
|
|
Example: |
|
token_groups,weight_groups = group_tokens_and_weights( |
|
token_ids = token_id_list |
|
, weights = token_weight_list |
|
) |
|
""" |
|
bos, eos = 49406, 49407 |
|
|
|
|
|
new_token_ids = [] |
|
new_weights = [] |
|
while len(token_ids) >= 75: |
|
|
|
head_75_tokens = [token_ids.pop(0) for _ in range(75)] |
|
head_75_weights = [weights.pop(0) for _ in range(75)] |
|
|
|
|
|
temp_77_token_ids = [bos] + head_75_tokens + [eos] |
|
temp_77_weights = [1.0] + head_75_weights + [1.0] |
|
|
|
|
|
new_token_ids.append(temp_77_token_ids) |
|
new_weights.append(temp_77_weights) |
|
|
|
|
|
if len(token_ids) > 0: |
|
padding_len = 75 - len(token_ids) if pad_last_block else 0 |
|
|
|
temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos] |
|
new_token_ids.append(temp_77_token_ids) |
|
|
|
temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0] |
|
new_weights.append(temp_77_weights) |
|
|
|
return new_token_ids, new_weights |
|
|
|
|
|
def get_weighted_text_embeddings_sdxl( |
|
pipe: StableDiffusionXLPipeline, |
|
prompt: str = "", |
|
prompt_2: str = None, |
|
neg_prompt: str = "", |
|
neg_prompt_2: str = None, |
|
num_images_per_prompt: int = 1, |
|
device: Optional[torch.device] = None, |
|
clip_skip: Optional[int] = None, |
|
): |
|
""" |
|
This function can process long prompt with weights, no length limitation |
|
for Stable Diffusion XL |
|
|
|
Args: |
|
pipe (StableDiffusionPipeline) |
|
prompt (str) |
|
prompt_2 (str) |
|
neg_prompt (str) |
|
neg_prompt_2 (str) |
|
num_images_per_prompt (int) |
|
device (torch.device) |
|
clip_skip (int) |
|
Returns: |
|
prompt_embeds (torch.Tensor) |
|
neg_prompt_embeds (torch.Tensor) |
|
""" |
|
device = device or pipe._execution_device |
|
|
|
if prompt_2: |
|
prompt = f"{prompt} {prompt_2}" |
|
|
|
if neg_prompt_2: |
|
neg_prompt = f"{neg_prompt} {neg_prompt_2}" |
|
|
|
prompt_t1 = prompt_t2 = prompt |
|
neg_prompt_t1 = neg_prompt_t2 = neg_prompt |
|
|
|
if isinstance(pipe, TextualInversionLoaderMixin): |
|
prompt_t1 = pipe.maybe_convert_prompt(prompt_t1, pipe.tokenizer) |
|
neg_prompt_t1 = pipe.maybe_convert_prompt(neg_prompt_t1, pipe.tokenizer) |
|
prompt_t2 = pipe.maybe_convert_prompt(prompt_t2, pipe.tokenizer_2) |
|
neg_prompt_t2 = pipe.maybe_convert_prompt(neg_prompt_t2, pipe.tokenizer_2) |
|
|
|
eos = pipe.tokenizer.eos_token_id |
|
|
|
|
|
prompt_tokens, prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, prompt_t1) |
|
neg_prompt_tokens, neg_prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt_t1) |
|
|
|
|
|
prompt_tokens_2, prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt_t2) |
|
neg_prompt_tokens_2, neg_prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt_t2) |
|
|
|
|
|
prompt_token_len = len(prompt_tokens) |
|
neg_prompt_token_len = len(neg_prompt_tokens) |
|
|
|
if prompt_token_len > neg_prompt_token_len: |
|
|
|
neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len) |
|
neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len) |
|
else: |
|
|
|
prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len) |
|
prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len) |
|
|
|
|
|
prompt_token_len_2 = len(prompt_tokens_2) |
|
neg_prompt_token_len_2 = len(neg_prompt_tokens_2) |
|
|
|
if prompt_token_len_2 > neg_prompt_token_len_2: |
|
|
|
neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2) |
|
neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2) |
|
else: |
|
|
|
prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2) |
|
prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2) |
|
|
|
embeds = [] |
|
neg_embeds = [] |
|
|
|
prompt_token_groups, prompt_weight_groups = group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy()) |
|
|
|
neg_prompt_token_groups, neg_prompt_weight_groups = group_tokens_and_weights( |
|
neg_prompt_tokens.copy(), neg_prompt_weights.copy() |
|
) |
|
|
|
prompt_token_groups_2, prompt_weight_groups_2 = group_tokens_and_weights( |
|
prompt_tokens_2.copy(), prompt_weights_2.copy() |
|
) |
|
|
|
neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = group_tokens_and_weights( |
|
neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy() |
|
) |
|
|
|
|
|
for i in range(len(prompt_token_groups)): |
|
|
|
token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=device) |
|
weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=device) |
|
|
|
token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=device) |
|
|
|
|
|
prompt_embeds_1 = pipe.text_encoder(token_tensor.to(device), output_hidden_states=True) |
|
|
|
|
|
prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(device), output_hidden_states=True) |
|
pooled_prompt_embeds = prompt_embeds_2[0] |
|
|
|
if clip_skip is None: |
|
prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2] |
|
prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2] |
|
else: |
|
|
|
prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-(clip_skip + 2)] |
|
prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-(clip_skip + 2)] |
|
|
|
prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states] |
|
token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0) |
|
|
|
for j in range(len(weight_tensor)): |
|
if weight_tensor[j] != 1.0: |
|
token_embedding[j] = ( |
|
token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j] |
|
) |
|
|
|
token_embedding = token_embedding.unsqueeze(0) |
|
embeds.append(token_embedding) |
|
|
|
|
|
neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=device) |
|
neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=device) |
|
neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=device) |
|
|
|
|
|
neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(device), output_hidden_states=True) |
|
neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2] |
|
|
|
|
|
neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(device), output_hidden_states=True) |
|
neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2] |
|
negative_pooled_prompt_embeds = neg_prompt_embeds_2[0] |
|
|
|
neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states] |
|
neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0) |
|
|
|
for z in range(len(neg_weight_tensor)): |
|
if neg_weight_tensor[z] != 1.0: |
|
neg_token_embedding[z] = ( |
|
neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z] |
|
) |
|
|
|
neg_token_embedding = neg_token_embedding.unsqueeze(0) |
|
neg_embeds.append(neg_token_embedding) |
|
|
|
prompt_embeds = torch.cat(embeds, dim=1) |
|
negative_prompt_embeds = torch.cat(neg_embeds, dim=1) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
|
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds |
|
|
|
|
|
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
EXAMPLE_DOC_STRING = """ |
|
Examples: |
|
```py |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
|
|
pipe = DiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0" |
|
, torch_dtype = torch.float16 |
|
, use_safetensors = True |
|
, variant = "fp16" |
|
, custom_pipeline = "lpw_stable_diffusion_xl", |
|
) |
|
|
|
prompt = "a white cat running on the grass"*20 |
|
prompt2 = "play a football"*20 |
|
prompt = f"{prompt},{prompt2}" |
|
neg_prompt = "blur, low quality" |
|
|
|
pipe.to("cuda") |
|
images = pipe( |
|
prompt = prompt |
|
, negative_prompt = neg_prompt |
|
).images[0] |
|
|
|
pipe.to("cpu") |
|
torch.cuda.empty_cache() |
|
images |
|
``` |
|
""" |
|
|
|
|
|
|
|
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): |
|
""" |
|
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 |
|
""" |
|
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) |
|
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) |
|
|
|
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) |
|
|
|
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg |
|
return noise_cfg |
|
|
|
|
|
|
|
def retrieve_latents( |
|
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" |
|
): |
|
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": |
|
return encoder_output.latent_dist.sample(generator) |
|
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": |
|
return encoder_output.latent_dist.mode() |
|
elif hasattr(encoder_output, "latents"): |
|
return encoder_output.latents |
|
else: |
|
raise AttributeError("Could not access latents of provided encoder_output") |
|
|
|
|
|
|
|
def retrieve_timesteps( |
|
scheduler, |
|
num_inference_steps: Optional[int] = None, |
|
device: Optional[Union[str, torch.device]] = None, |
|
timesteps: Optional[List[int]] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles |
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. |
|
|
|
Args: |
|
scheduler (`SchedulerMixin`): |
|
The scheduler to get timesteps from. |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, |
|
`timesteps` must be `None`. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default |
|
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` |
|
must be `None`. |
|
|
|
Returns: |
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the |
|
second element is the number of inference steps. |
|
""" |
|
if timesteps is not None: |
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) |
|
if not accepts_timesteps: |
|
raise ValueError( |
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" |
|
f" timestep schedules. Please check whether you are using the correct scheduler." |
|
) |
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
num_inference_steps = len(timesteps) |
|
else: |
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) |
|
timesteps = scheduler.timesteps |
|
return timesteps, num_inference_steps |
|
|
|
|
|
class SDXLLongPromptWeightingPipeline( |
|
DiffusionPipeline, |
|
StableDiffusionMixin, |
|
FromSingleFileMixin, |
|
IPAdapterMixin, |
|
LoraLoaderMixin, |
|
TextualInversionLoaderMixin, |
|
): |
|
r""" |
|
Pipeline for text-to-image generation using Stable Diffusion XL. |
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods |
|
implemented for all pipelines (downloading, saving, running on a particular device, etc.). |
|
|
|
The pipeline also inherits the following loading methods: |
|
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files |
|
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters |
|
- [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights |
|
- [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights |
|
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings |
|
|
|
Args: |
|
vae ([`AutoencoderKL`]): |
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. |
|
text_encoder ([`CLIPTextModel`]): |
|
Frozen text-encoder. Stable Diffusion XL uses the text portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically |
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. |
|
text_encoder_2 ([` CLIPTextModelWithProjection`]): |
|
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of |
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), |
|
specifically the |
|
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k) |
|
variant. |
|
tokenizer (`CLIPTokenizer`): |
|
Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
tokenizer_2 (`CLIPTokenizer`): |
|
Second Tokenizer of class |
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
|
unet ([`UNet2DConditionModel`]): |
|
Conditional U-Net architecture to denoise the encoded image latents. |
|
scheduler ([`SchedulerMixin`]): |
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of |
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. |
|
feature_extractor ([`~transformers.CLIPImageProcessor`]): |
|
A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. |
|
""" |
|
|
|
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae" |
|
_optional_components = [ |
|
"tokenizer", |
|
"tokenizer_2", |
|
"text_encoder", |
|
"text_encoder_2", |
|
"image_encoder", |
|
"feature_extractor", |
|
] |
|
_callback_tensor_inputs = [ |
|
"latents", |
|
"prompt_embeds", |
|
"negative_prompt_embeds", |
|
"add_text_embeds", |
|
"add_time_ids", |
|
"negative_pooled_prompt_embeds", |
|
"negative_add_time_ids", |
|
] |
|
|
|
def __init__( |
|
self, |
|
vae: AutoencoderKL, |
|
text_encoder: CLIPTextModel, |
|
text_encoder_2: CLIPTextModelWithProjection, |
|
tokenizer: CLIPTokenizer, |
|
tokenizer_2: CLIPTokenizer, |
|
unet: UNet2DConditionModel, |
|
scheduler: KarrasDiffusionSchedulers, |
|
feature_extractor: Optional[CLIPImageProcessor] = None, |
|
image_encoder: Optional[CLIPVisionModelWithProjection] = None, |
|
force_zeros_for_empty_prompt: bool = True, |
|
add_watermarker: Optional[bool] = None, |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
text_encoder=text_encoder, |
|
text_encoder_2=text_encoder_2, |
|
tokenizer=tokenizer, |
|
tokenizer_2=tokenizer_2, |
|
unet=unet, |
|
scheduler=scheduler, |
|
feature_extractor=feature_extractor, |
|
image_encoder=image_encoder, |
|
) |
|
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
self.mask_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True |
|
) |
|
self.default_sample_size = self.unet.config.sample_size |
|
|
|
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available() |
|
|
|
if add_watermarker: |
|
self.watermark = StableDiffusionXLWatermarker() |
|
else: |
|
self.watermark = None |
|
|
|
def enable_model_cpu_offload(self, gpu_id=0): |
|
r""" |
|
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared |
|
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward` |
|
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with |
|
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`. |
|
""" |
|
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"): |
|
from accelerate import cpu_offload_with_hook |
|
else: |
|
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
if self.device.type != "cpu": |
|
self.to("cpu", silence_dtype_warnings=True) |
|
torch.cuda.empty_cache() |
|
|
|
model_sequence = ( |
|
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] |
|
) |
|
model_sequence.extend([self.unet, self.vae]) |
|
|
|
hook = None |
|
for cpu_offloaded_model in model_sequence: |
|
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook) |
|
|
|
|
|
self.final_offload_hook = hook |
|
|
|
|
|
def encode_prompt( |
|
self, |
|
prompt: str, |
|
prompt_2: Optional[str] = None, |
|
device: Optional[torch.device] = None, |
|
num_images_per_prompt: int = 1, |
|
do_classifier_free_guidance: bool = True, |
|
negative_prompt: Optional[str] = None, |
|
negative_prompt_2: Optional[str] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
lora_scale: Optional[float] = None, |
|
): |
|
r""" |
|
Encodes the prompt into text encoder hidden states. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
prompt to be encoded |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in both text-encoders |
|
device: (`torch.device`): |
|
torch device |
|
num_images_per_prompt (`int`): |
|
number of images that should be generated per prompt |
|
do_classifier_free_guidance (`bool`): |
|
whether to use classifier free guidance or not |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
pooled_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
lora_scale (`float`, *optional*): |
|
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. |
|
""" |
|
device = device or self._execution_device |
|
|
|
|
|
|
|
if lora_scale is not None and isinstance(self, LoraLoaderMixin): |
|
self._lora_scale = lora_scale |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] |
|
text_encoders = ( |
|
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] |
|
) |
|
|
|
if prompt_embeds is None: |
|
prompt_2 = prompt_2 or prompt |
|
|
|
prompt_embeds_list = [] |
|
prompts = [prompt, prompt_2] |
|
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): |
|
if isinstance(self, TextualInversionLoaderMixin): |
|
prompt = self.maybe_convert_prompt(prompt, tokenizer) |
|
|
|
text_inputs = tokenizer( |
|
prompt, |
|
padding="max_length", |
|
max_length=tokenizer.model_max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
text_input_ids = text_inputs.input_ids |
|
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
|
text_input_ids, untruncated_ids |
|
): |
|
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) |
|
logger.warning( |
|
"The following part of your input was truncated because CLIP can only handle sequences up to" |
|
f" {tokenizer.model_max_length} tokens: {removed_text}" |
|
) |
|
|
|
prompt_embeds = text_encoder( |
|
text_input_ids.to(device), |
|
output_hidden_states=True, |
|
) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
|
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
|
|
|
|
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt |
|
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: |
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds) |
|
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) |
|
elif do_classifier_free_guidance and negative_prompt_embeds is None: |
|
negative_prompt = negative_prompt or "" |
|
negative_prompt_2 = negative_prompt_2 or negative_prompt |
|
|
|
uncond_tokens: List[str] |
|
if prompt is not None and type(prompt) is not type(negative_prompt): |
|
raise TypeError( |
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" |
|
f" {type(prompt)}." |
|
) |
|
elif isinstance(negative_prompt, str): |
|
uncond_tokens = [negative_prompt, negative_prompt_2] |
|
elif batch_size != len(negative_prompt): |
|
raise ValueError( |
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" |
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" |
|
" the batch size of `prompt`." |
|
) |
|
else: |
|
uncond_tokens = [negative_prompt, negative_prompt_2] |
|
|
|
negative_prompt_embeds_list = [] |
|
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): |
|
if isinstance(self, TextualInversionLoaderMixin): |
|
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) |
|
|
|
max_length = prompt_embeds.shape[1] |
|
uncond_input = tokenizer( |
|
negative_prompt, |
|
padding="max_length", |
|
max_length=max_length, |
|
truncation=True, |
|
return_tensors="pt", |
|
) |
|
|
|
negative_prompt_embeds = text_encoder( |
|
uncond_input.input_ids.to(device), |
|
output_hidden_states=True, |
|
) |
|
|
|
negative_pooled_prompt_embeds = negative_prompt_embeds[0] |
|
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] |
|
|
|
negative_prompt_embeds_list.append(negative_prompt_embeds) |
|
|
|
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
if do_classifier_free_guidance: |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) |
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
if do_classifier_free_guidance: |
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
|
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds |
|
|
|
|
|
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): |
|
dtype = next(self.image_encoder.parameters()).dtype |
|
|
|
if not isinstance(image, torch.Tensor): |
|
image = self.feature_extractor(image, return_tensors="pt").pixel_values |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
if output_hidden_states: |
|
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] |
|
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_enc_hidden_states = self.image_encoder( |
|
torch.zeros_like(image), output_hidden_states=True |
|
).hidden_states[-2] |
|
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( |
|
num_images_per_prompt, dim=0 |
|
) |
|
return image_enc_hidden_states, uncond_image_enc_hidden_states |
|
else: |
|
image_embeds = self.image_encoder(image).image_embeds |
|
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
|
uncond_image_embeds = torch.zeros_like(image_embeds) |
|
|
|
return image_embeds, uncond_image_embeds |
|
|
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def check_inputs( |
|
self, |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
strength, |
|
callback_steps, |
|
negative_prompt=None, |
|
negative_prompt_2=None, |
|
prompt_embeds=None, |
|
negative_prompt_embeds=None, |
|
pooled_prompt_embeds=None, |
|
negative_pooled_prompt_embeds=None, |
|
callback_on_step_end_tensor_inputs=None, |
|
): |
|
if height % 8 != 0 or width % 8 != 0: |
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") |
|
|
|
if strength < 0 or strength > 1: |
|
raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}") |
|
|
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): |
|
raise ValueError( |
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type" |
|
f" {type(callback_steps)}." |
|
) |
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all( |
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs |
|
): |
|
raise ValueError( |
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" |
|
) |
|
|
|
if prompt is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt_2 is not None and prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" |
|
" only forward one of the two." |
|
) |
|
elif prompt is None and prompt_embeds is None: |
|
raise ValueError( |
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." |
|
) |
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): |
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") |
|
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): |
|
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") |
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
elif negative_prompt_2 is not None and negative_prompt_embeds is not None: |
|
raise ValueError( |
|
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" |
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two." |
|
) |
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None: |
|
if prompt_embeds.shape != negative_prompt_embeds.shape: |
|
raise ValueError( |
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" |
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" |
|
f" {negative_prompt_embeds.shape}." |
|
) |
|
|
|
if prompt_embeds is not None and pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." |
|
) |
|
|
|
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: |
|
raise ValueError( |
|
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." |
|
) |
|
|
|
def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None): |
|
|
|
if denoising_start is None: |
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
else: |
|
t_start = 0 |
|
|
|
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] |
|
|
|
|
|
|
|
if denoising_start is not None: |
|
discrete_timestep_cutoff = int( |
|
round( |
|
self.scheduler.config.num_train_timesteps |
|
- (denoising_start * self.scheduler.config.num_train_timesteps) |
|
) |
|
) |
|
|
|
num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item() |
|
if self.scheduler.order == 2 and num_inference_steps % 2 == 0: |
|
|
|
|
|
|
|
|
|
|
|
|
|
num_inference_steps = num_inference_steps + 1 |
|
|
|
|
|
timesteps = timesteps[-num_inference_steps:] |
|
return timesteps, num_inference_steps |
|
|
|
return timesteps, num_inference_steps - t_start |
|
|
|
def prepare_latents( |
|
self, |
|
image, |
|
mask, |
|
width, |
|
height, |
|
num_channels_latents, |
|
timestep, |
|
batch_size, |
|
num_images_per_prompt, |
|
dtype, |
|
device, |
|
generator=None, |
|
add_noise=True, |
|
latents=None, |
|
is_strength_max=True, |
|
return_noise=False, |
|
return_image_latents=False, |
|
): |
|
batch_size *= num_images_per_prompt |
|
|
|
if image is None: |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
int(height) // self.vae_scale_factor, |
|
int(width) // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
elif mask is None: |
|
if not isinstance(image, (torch.Tensor, Image.Image, list)): |
|
raise ValueError( |
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" |
|
) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.text_encoder_2.to("cpu") |
|
torch.cuda.empty_cache() |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
if image.shape[1] == 4: |
|
init_latents = image |
|
|
|
else: |
|
|
|
if self.vae.config.force_upcast: |
|
image = image.float() |
|
self.vae.to(dtype=torch.float32) |
|
|
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
elif isinstance(generator, list): |
|
init_latents = [ |
|
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) |
|
for i in range(batch_size) |
|
] |
|
init_latents = torch.cat(init_latents, dim=0) |
|
else: |
|
init_latents = retrieve_latents(self.vae.encode(image), generator=generator) |
|
|
|
if self.vae.config.force_upcast: |
|
self.vae.to(dtype) |
|
|
|
init_latents = init_latents.to(dtype) |
|
init_latents = self.vae.config.scaling_factor * init_latents |
|
|
|
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0: |
|
|
|
additional_image_per_prompt = batch_size // init_latents.shape[0] |
|
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0) |
|
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0: |
|
raise ValueError( |
|
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts." |
|
) |
|
else: |
|
init_latents = torch.cat([init_latents], dim=0) |
|
|
|
if add_noise: |
|
shape = init_latents.shape |
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
init_latents = self.scheduler.add_noise(init_latents, noise, timestep) |
|
|
|
latents = init_latents |
|
return latents |
|
|
|
else: |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
int(height) // self.vae_scale_factor, |
|
int(width) // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if (image is None or timestep is None) and not is_strength_max: |
|
raise ValueError( |
|
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise." |
|
"However, either the image or the noise timestep has not been provided." |
|
) |
|
|
|
if image.shape[1] == 4: |
|
image_latents = image.to(device=device, dtype=dtype) |
|
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) |
|
elif return_image_latents or (latents is None and not is_strength_max): |
|
image = image.to(device=device, dtype=dtype) |
|
image_latents = self._encode_vae_image(image=image, generator=generator) |
|
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) |
|
|
|
if latents is None and add_noise: |
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
|
|
latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep) |
|
|
|
latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents |
|
elif add_noise: |
|
noise = latents.to(device) |
|
latents = noise * self.scheduler.init_noise_sigma |
|
else: |
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
|
latents = image_latents.to(device) |
|
|
|
outputs = (latents,) |
|
|
|
if return_noise: |
|
outputs += (noise,) |
|
|
|
if return_image_latents: |
|
outputs += (image_latents,) |
|
|
|
return outputs |
|
|
|
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): |
|
dtype = image.dtype |
|
if self.vae.config.force_upcast: |
|
image = image.float() |
|
self.vae.to(dtype=torch.float32) |
|
|
|
if isinstance(generator, list): |
|
image_latents = [ |
|
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) |
|
for i in range(image.shape[0]) |
|
] |
|
image_latents = torch.cat(image_latents, dim=0) |
|
else: |
|
image_latents = retrieve_latents(self.vae.encode(image), generator=generator) |
|
|
|
if self.vae.config.force_upcast: |
|
self.vae.to(dtype) |
|
|
|
image_latents = image_latents.to(dtype) |
|
image_latents = self.vae.config.scaling_factor * image_latents |
|
|
|
return image_latents |
|
|
|
def prepare_mask_latents( |
|
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance |
|
): |
|
|
|
|
|
|
|
mask = torch.nn.functional.interpolate( |
|
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor) |
|
) |
|
mask = mask.to(device=device, dtype=dtype) |
|
|
|
|
|
if mask.shape[0] < batch_size: |
|
if not batch_size % mask.shape[0] == 0: |
|
raise ValueError( |
|
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" |
|
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" |
|
" of masks that you pass is divisible by the total requested batch size." |
|
) |
|
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) |
|
|
|
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask |
|
|
|
if masked_image is not None and masked_image.shape[1] == 4: |
|
masked_image_latents = masked_image |
|
else: |
|
masked_image_latents = None |
|
|
|
if masked_image is not None: |
|
if masked_image_latents is None: |
|
masked_image = masked_image.to(device=device, dtype=dtype) |
|
masked_image_latents = self._encode_vae_image(masked_image, generator=generator) |
|
|
|
if masked_image_latents.shape[0] < batch_size: |
|
if not batch_size % masked_image_latents.shape[0] == 0: |
|
raise ValueError( |
|
"The passed images and the required batch size don't match. Images are supposed to be duplicated" |
|
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." |
|
" Make sure the number of images that you pass is divisible by the total requested batch size." |
|
) |
|
masked_image_latents = masked_image_latents.repeat( |
|
batch_size // masked_image_latents.shape[0], 1, 1, 1 |
|
) |
|
|
|
masked_image_latents = ( |
|
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents |
|
) |
|
|
|
|
|
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) |
|
|
|
return mask, masked_image_latents |
|
|
|
def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype): |
|
add_time_ids = list(original_size + crops_coords_top_left + target_size) |
|
|
|
passed_add_embed_dim = ( |
|
self.unet.config.addition_time_embed_dim * len(add_time_ids) + self.text_encoder_2.config.projection_dim |
|
) |
|
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features |
|
|
|
if expected_add_embed_dim != passed_add_embed_dim: |
|
raise ValueError( |
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." |
|
) |
|
|
|
add_time_ids = torch.tensor([add_time_ids], dtype=dtype) |
|
return add_time_ids |
|
|
|
|
|
def upcast_vae(self): |
|
dtype = self.vae.dtype |
|
self.vae.to(dtype=torch.float32) |
|
use_torch_2_0_or_xformers = isinstance( |
|
self.vae.decoder.mid_block.attentions[0].processor, |
|
( |
|
AttnProcessor2_0, |
|
XFormersAttnProcessor, |
|
LoRAXFormersAttnProcessor, |
|
LoRAAttnProcessor2_0, |
|
), |
|
) |
|
|
|
|
|
if use_torch_2_0_or_xformers: |
|
self.vae.post_quant_conv.to(dtype) |
|
self.vae.decoder.conv_in.to(dtype) |
|
self.vae.decoder.mid_block.to(dtype) |
|
|
|
|
|
def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32): |
|
""" |
|
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 |
|
|
|
Args: |
|
timesteps (`torch.Tensor`): |
|
generate embedding vectors at these timesteps |
|
embedding_dim (`int`, *optional*, defaults to 512): |
|
dimension of the embeddings to generate |
|
dtype: |
|
data type of the generated embeddings |
|
|
|
Returns: |
|
`torch.Tensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)` |
|
""" |
|
assert len(w.shape) == 1 |
|
w = w * 1000.0 |
|
|
|
half_dim = embedding_dim // 2 |
|
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) |
|
emb = w.to(dtype)[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0, 1)) |
|
assert emb.shape == (w.shape[0], embedding_dim) |
|
return emb |
|
|
|
@property |
|
def guidance_scale(self): |
|
return self._guidance_scale |
|
|
|
@property |
|
def guidance_rescale(self): |
|
return self._guidance_rescale |
|
|
|
@property |
|
def clip_skip(self): |
|
return self._clip_skip |
|
|
|
|
|
|
|
|
|
@property |
|
def do_classifier_free_guidance(self): |
|
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None |
|
|
|
@property |
|
def cross_attention_kwargs(self): |
|
return self._cross_attention_kwargs |
|
|
|
@property |
|
def denoising_end(self): |
|
return self._denoising_end |
|
|
|
@property |
|
def denoising_start(self): |
|
return self._denoising_start |
|
|
|
@property |
|
def num_timesteps(self): |
|
return self._num_timesteps |
|
|
|
@torch.no_grad() |
|
@replace_example_docstring(EXAMPLE_DOC_STRING) |
|
def __call__( |
|
self, |
|
prompt: str = None, |
|
prompt_2: Optional[str] = None, |
|
image: Optional[PipelineImageInput] = None, |
|
mask_image: Optional[PipelineImageInput] = None, |
|
masked_image_latents: Optional[torch.Tensor] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
strength: float = 0.8, |
|
num_inference_steps: int = 50, |
|
timesteps: List[int] = None, |
|
denoising_start: Optional[float] = None, |
|
denoising_end: Optional[float] = None, |
|
guidance_scale: float = 5.0, |
|
negative_prompt: Optional[str] = None, |
|
negative_prompt_2: Optional[str] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
original_size: Optional[Tuple[int, int]] = None, |
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
target_size: Optional[Tuple[int, int]] = None, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
**kwargs, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str`): |
|
The prompt to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
prompt_2 (`str`): |
|
The prompt to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
used in both text-encoders |
|
image (`PipelineImageInput`, *optional*): |
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the |
|
process. |
|
mask_image (`PipelineImageInput`, *optional*): |
|
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be |
|
replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a |
|
PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should |
|
contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. |
|
strength (`float`, *optional*, defaults to 0.8): |
|
Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1. |
|
`image` will be used as a starting point, adding more noise to it the larger the `strength`. The |
|
number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added |
|
noise will be maximum and the denoising process will run for the full number of iterations specified in |
|
`num_inference_steps`. A value of 1, therefore, essentially ignores `image`. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
timesteps (`List[int]`, *optional*): |
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument |
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is |
|
passed will be used. Must be in descending order. |
|
denoising_start (`float`, *optional*): |
|
When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be |
|
bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and |
|
it is assumed that the passed `image` is a partly denoised image. Note that when this is specified, |
|
strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline |
|
is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refine Image |
|
Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality). |
|
denoising_end (`float`, *optional*): |
|
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be |
|
completed before it is intentionally prematurely terminated. As a result, the returned sample will |
|
still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be |
|
denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the |
|
final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline |
|
forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refine Image |
|
Quality**](https://huggingface.co/docs/diffusers/using-diffusers/sdxl#refine-image-quality). |
|
guidance_scale (`float`, *optional*, defaults to 5.0): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
negative_prompt (`str`): |
|
The prompt not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is |
|
less than `1`). |
|
negative_prompt_2 (`str`): |
|
The prompt not to guide the image generation to be sent to `tokenizer_2` and |
|
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
eta (`float`, *optional*, defaults to 0.0): |
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to |
|
[`schedulers.DDIMScheduler`], will be ignored for others. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.Tensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
ip_adapter_image: (`PipelineImageInput`, *optional*): |
|
Optional image input to work with IP Adapters. |
|
prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
pooled_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead |
|
of a plain tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
guidance_rescale (`float`, *optional*, defaults to 0.0): |
|
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are |
|
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of |
|
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). |
|
Guidance rescale factor should fix overexposure when using zero terminal SNR. |
|
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. |
|
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as |
|
explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): |
|
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position |
|
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting |
|
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of |
|
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): |
|
For most cases, `target_size` should be set to the desired height and width of the generated image. If |
|
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in |
|
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). |
|
clip_skip (`int`, *optional*): |
|
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that |
|
the output of the pre-final layer will be used for computing the prompt embeddings. |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a |
|
`tuple`. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
|
|
callback = kwargs.pop("callback", None) |
|
callback_steps = kwargs.pop("callback_steps", None) |
|
|
|
if callback is not None: |
|
deprecate( |
|
"callback", |
|
"1.0.0", |
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", |
|
) |
|
if callback_steps is not None: |
|
deprecate( |
|
"callback_steps", |
|
"1.0.0", |
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", |
|
) |
|
|
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
original_size = original_size or (height, width) |
|
target_size = target_size or (height, width) |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
strength, |
|
callback_steps, |
|
negative_prompt, |
|
negative_prompt_2, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
callback_on_step_end_tensor_inputs, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._guidance_rescale = guidance_rescale |
|
self._clip_skip = clip_skip |
|
self._cross_attention_kwargs = cross_attention_kwargs |
|
self._denoising_end = denoising_end |
|
self._denoising_start = denoising_start |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
if ip_adapter_image is not None: |
|
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True |
|
image_embeds, negative_image_embeds = self.encode_image( |
|
ip_adapter_image, device, num_images_per_prompt, output_hidden_state |
|
) |
|
if self.do_classifier_free_guidance: |
|
image_embeds = torch.cat([negative_image_embeds, image_embeds]) |
|
|
|
|
|
(self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None) |
|
|
|
negative_prompt = negative_prompt if negative_prompt is not None else "" |
|
|
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = get_weighted_text_embeddings_sdxl( |
|
pipe=self, |
|
prompt=prompt, |
|
neg_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
clip_skip=clip_skip, |
|
) |
|
dtype = prompt_embeds.dtype |
|
|
|
if isinstance(image, Image.Image): |
|
image = self.image_processor.preprocess(image, height=height, width=width) |
|
if image is not None: |
|
image = image.to(device=self.device, dtype=dtype) |
|
|
|
if isinstance(mask_image, Image.Image): |
|
mask = self.mask_processor.preprocess(mask_image, height=height, width=width) |
|
else: |
|
mask = mask_image |
|
if mask_image is not None: |
|
mask = mask.to(device=self.device, dtype=dtype) |
|
|
|
if masked_image_latents is not None: |
|
masked_image = masked_image_latents |
|
elif image.shape[1] == 4: |
|
|
|
masked_image = None |
|
else: |
|
masked_image = image * (mask < 0.5) |
|
else: |
|
mask = None |
|
|
|
|
|
def denoising_value_valid(dnv): |
|
return isinstance(dnv, float) and 0 < dnv < 1 |
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) |
|
if image is not None: |
|
timesteps, num_inference_steps = self.get_timesteps( |
|
num_inference_steps, |
|
strength, |
|
device, |
|
denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None, |
|
) |
|
|
|
|
|
if num_inference_steps < 1: |
|
raise ValueError( |
|
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" |
|
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." |
|
) |
|
|
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
is_strength_max = strength == 1.0 |
|
add_noise = True if self.denoising_start is None else False |
|
|
|
|
|
num_channels_latents = self.vae.config.latent_channels |
|
num_channels_unet = self.unet.config.in_channels |
|
return_image_latents = num_channels_unet == 4 |
|
|
|
latents = self.prepare_latents( |
|
image=image, |
|
mask=mask, |
|
width=width, |
|
height=height, |
|
num_channels_latents=num_channels_unet, |
|
timestep=latent_timestep, |
|
batch_size=batch_size, |
|
num_images_per_prompt=num_images_per_prompt, |
|
dtype=prompt_embeds.dtype, |
|
device=device, |
|
generator=generator, |
|
add_noise=add_noise, |
|
latents=latents, |
|
is_strength_max=is_strength_max, |
|
return_noise=True, |
|
return_image_latents=return_image_latents, |
|
) |
|
|
|
if mask is not None: |
|
if return_image_latents: |
|
latents, noise, image_latents = latents |
|
else: |
|
latents, noise = latents |
|
|
|
|
|
if mask is not None: |
|
mask, masked_image_latents = self.prepare_mask_latents( |
|
mask=mask, |
|
masked_image=masked_image, |
|
batch_size=batch_size * num_images_per_prompt, |
|
height=height, |
|
width=width, |
|
dtype=prompt_embeds.dtype, |
|
device=device, |
|
generator=generator, |
|
do_classifier_free_guidance=self.do_classifier_free_guidance, |
|
) |
|
|
|
|
|
if num_channels_unet == 9: |
|
|
|
num_channels_mask = mask.shape[1] |
|
num_channels_masked_image = masked_image_latents.shape[1] |
|
if num_channels_latents + num_channels_mask + num_channels_masked_image != num_channels_unet: |
|
raise ValueError( |
|
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" |
|
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" |
|
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" |
|
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" |
|
" `pipeline.unet` or your `mask_image` or `image` input." |
|
) |
|
elif num_channels_unet != 4: |
|
raise ValueError( |
|
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}." |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else {} |
|
|
|
height, width = latents.shape[-2:] |
|
height = height * self.vae_scale_factor |
|
width = width * self.vae_scale_factor |
|
|
|
original_size = original_size or (height, width) |
|
target_size = target_size or (height, width) |
|
|
|
|
|
add_text_embeds = pooled_prompt_embeds |
|
add_time_ids = self._get_add_time_ids( |
|
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype |
|
) |
|
|
|
if self.do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) |
|
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) |
|
|
|
prompt_embeds = prompt_embeds.to(device) |
|
add_text_embeds = add_text_embeds.to(device) |
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) |
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
|
|
|
|
if ( |
|
self.denoising_end is not None |
|
and self.denoising_start is not None |
|
and denoising_value_valid(self.denoising_end) |
|
and denoising_value_valid(self.denoising_start) |
|
and self.denoising_start >= self.denoising_end |
|
): |
|
raise ValueError( |
|
f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: " |
|
+ f" {self.denoising_end} when using type float." |
|
) |
|
elif self.denoising_end is not None and denoising_value_valid(self.denoising_end): |
|
discrete_timestep_cutoff = int( |
|
round( |
|
self.scheduler.config.num_train_timesteps |
|
- (self.denoising_end * self.scheduler.config.num_train_timesteps) |
|
) |
|
) |
|
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) |
|
timesteps = timesteps[:num_inference_steps] |
|
|
|
|
|
timestep_cond = None |
|
if self.unet.config.time_cond_proj_dim is not None: |
|
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) |
|
timestep_cond = self.get_guidance_scale_embedding( |
|
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim |
|
).to(device=device, dtype=latents.dtype) |
|
|
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents |
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
if mask is not None and num_channels_unet == 9: |
|
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) |
|
|
|
|
|
added_cond_kwargs.update({"text_embeds": add_text_embeds, "time_ids": add_time_ids}) |
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
timestep_cond=timestep_cond, |
|
cross_attention_kwargs=self.cross_attention_kwargs, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if self.do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if self.do_classifier_free_guidance and guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
if mask is not None and num_channels_unet == 4: |
|
init_latents_proper = image_latents |
|
|
|
if self.do_classifier_free_guidance: |
|
init_mask, _ = mask.chunk(2) |
|
else: |
|
init_mask = mask |
|
|
|
if i < len(timesteps) - 1: |
|
noise_timestep = timesteps[i + 1] |
|
init_latents_proper = self.scheduler.add_noise( |
|
init_latents_proper, noise, torch.tensor([noise_timestep]) |
|
) |
|
|
|
latents = (1 - init_mask) * init_latents_proper + init_mask * latents |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) |
|
negative_pooled_prompt_embeds = callback_outputs.pop( |
|
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds |
|
) |
|
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
if not output_type == "latent": |
|
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
|
|
if needs_upcasting: |
|
self.upcast_vae() |
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) |
|
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
|
|
|
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
else: |
|
image = latents |
|
return StableDiffusionXLPipelineOutput(images=image) |
|
|
|
|
|
if self.watermark is not None: |
|
image = self.watermark.apply_watermark(image) |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: |
|
self.final_offload_hook.offload() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return StableDiffusionXLPipelineOutput(images=image) |
|
|
|
def text2img( |
|
self, |
|
prompt: str = None, |
|
prompt_2: Optional[str] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
timesteps: List[int] = None, |
|
denoising_start: Optional[float] = None, |
|
denoising_end: Optional[float] = None, |
|
guidance_scale: float = 5.0, |
|
negative_prompt: Optional[str] = None, |
|
negative_prompt_2: Optional[str] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
original_size: Optional[Tuple[int, int]] = None, |
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
target_size: Optional[Tuple[int, int]] = None, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
**kwargs, |
|
): |
|
r""" |
|
Function invoked when calling pipeline for text-to-image. |
|
|
|
Refer to the documentation of the `__call__` method for parameter descriptions. |
|
""" |
|
return self.__call__( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
height=height, |
|
width=width, |
|
num_inference_steps=num_inference_steps, |
|
timesteps=timesteps, |
|
denoising_start=denoising_start, |
|
denoising_end=denoising_end, |
|
guidance_scale=guidance_scale, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
ip_adapter_image=ip_adapter_image, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
guidance_rescale=guidance_rescale, |
|
original_size=original_size, |
|
crops_coords_top_left=crops_coords_top_left, |
|
target_size=target_size, |
|
clip_skip=clip_skip, |
|
callback_on_step_end=callback_on_step_end, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
**kwargs, |
|
) |
|
|
|
def img2img( |
|
self, |
|
prompt: str = None, |
|
prompt_2: Optional[str] = None, |
|
image: Optional[PipelineImageInput] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
strength: float = 0.8, |
|
num_inference_steps: int = 50, |
|
timesteps: List[int] = None, |
|
denoising_start: Optional[float] = None, |
|
denoising_end: Optional[float] = None, |
|
guidance_scale: float = 5.0, |
|
negative_prompt: Optional[str] = None, |
|
negative_prompt_2: Optional[str] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
original_size: Optional[Tuple[int, int]] = None, |
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
target_size: Optional[Tuple[int, int]] = None, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
**kwargs, |
|
): |
|
r""" |
|
Function invoked when calling pipeline for image-to-image. |
|
|
|
Refer to the documentation of the `__call__` method for parameter descriptions. |
|
""" |
|
return self.__call__( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
image=image, |
|
height=height, |
|
width=width, |
|
strength=strength, |
|
num_inference_steps=num_inference_steps, |
|
timesteps=timesteps, |
|
denoising_start=denoising_start, |
|
denoising_end=denoising_end, |
|
guidance_scale=guidance_scale, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
ip_adapter_image=ip_adapter_image, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
guidance_rescale=guidance_rescale, |
|
original_size=original_size, |
|
crops_coords_top_left=crops_coords_top_left, |
|
target_size=target_size, |
|
clip_skip=clip_skip, |
|
callback_on_step_end=callback_on_step_end, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
**kwargs, |
|
) |
|
|
|
def inpaint( |
|
self, |
|
prompt: str = None, |
|
prompt_2: Optional[str] = None, |
|
image: Optional[PipelineImageInput] = None, |
|
mask_image: Optional[PipelineImageInput] = None, |
|
masked_image_latents: Optional[torch.Tensor] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
strength: float = 0.8, |
|
num_inference_steps: int = 50, |
|
timesteps: List[int] = None, |
|
denoising_start: Optional[float] = None, |
|
denoising_end: Optional[float] = None, |
|
guidance_scale: float = 5.0, |
|
negative_prompt: Optional[str] = None, |
|
negative_prompt_2: Optional[str] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.Tensor] = None, |
|
ip_adapter_image: Optional[PipelineImageInput] = None, |
|
prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_prompt_embeds: Optional[torch.Tensor] = None, |
|
pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
original_size: Optional[Tuple[int, int]] = None, |
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
target_size: Optional[Tuple[int, int]] = None, |
|
clip_skip: Optional[int] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
**kwargs, |
|
): |
|
r""" |
|
Function invoked when calling pipeline for inpainting. |
|
|
|
Refer to the documentation of the `__call__` method for parameter descriptions. |
|
""" |
|
return self.__call__( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
image=image, |
|
mask_image=mask_image, |
|
masked_image_latents=masked_image_latents, |
|
height=height, |
|
width=width, |
|
strength=strength, |
|
num_inference_steps=num_inference_steps, |
|
timesteps=timesteps, |
|
denoising_start=denoising_start, |
|
denoising_end=denoising_end, |
|
guidance_scale=guidance_scale, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
num_images_per_prompt=num_images_per_prompt, |
|
eta=eta, |
|
generator=generator, |
|
latents=latents, |
|
ip_adapter_image=ip_adapter_image, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
output_type=output_type, |
|
return_dict=return_dict, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
guidance_rescale=guidance_rescale, |
|
original_size=original_size, |
|
crops_coords_top_left=crops_coords_top_left, |
|
target_size=target_size, |
|
clip_skip=clip_skip, |
|
callback_on_step_end=callback_on_step_end, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
**kwargs, |
|
) |
|
|
|
|
|
def load_lora_weights(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs): |
|
|
|
|
|
|
|
state_dict, network_alphas = self.lora_state_dict( |
|
pretrained_model_name_or_path_or_dict, |
|
unet_config=self.unet.config, |
|
**kwargs, |
|
) |
|
self.load_lora_into_unet(state_dict, network_alphas=network_alphas, unet=self.unet) |
|
|
|
text_encoder_state_dict = {k: v for k, v in state_dict.items() if "text_encoder." in k} |
|
if len(text_encoder_state_dict) > 0: |
|
self.load_lora_into_text_encoder( |
|
text_encoder_state_dict, |
|
network_alphas=network_alphas, |
|
text_encoder=self.text_encoder, |
|
prefix="text_encoder", |
|
lora_scale=self.lora_scale, |
|
) |
|
|
|
text_encoder_2_state_dict = {k: v for k, v in state_dict.items() if "text_encoder_2." in k} |
|
if len(text_encoder_2_state_dict) > 0: |
|
self.load_lora_into_text_encoder( |
|
text_encoder_2_state_dict, |
|
network_alphas=network_alphas, |
|
text_encoder=self.text_encoder_2, |
|
prefix="text_encoder_2", |
|
lora_scale=self.lora_scale, |
|
) |
|
|
|
@classmethod |
|
def save_lora_weights( |
|
self, |
|
save_directory: Union[str, os.PathLike], |
|
unet_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, |
|
text_encoder_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, |
|
text_encoder_2_lora_layers: Dict[str, Union[torch.nn.Module, torch.Tensor]] = None, |
|
is_main_process: bool = True, |
|
weight_name: str = None, |
|
save_function: Callable = None, |
|
safe_serialization: bool = False, |
|
): |
|
state_dict = {} |
|
|
|
def pack_weights(layers, prefix): |
|
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers |
|
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()} |
|
return layers_state_dict |
|
|
|
state_dict.update(pack_weights(unet_lora_layers, "unet")) |
|
|
|
if text_encoder_lora_layers and text_encoder_2_lora_layers: |
|
state_dict.update(pack_weights(text_encoder_lora_layers, "text_encoder")) |
|
state_dict.update(pack_weights(text_encoder_2_lora_layers, "text_encoder_2")) |
|
|
|
self.write_lora_layers( |
|
state_dict=state_dict, |
|
save_directory=save_directory, |
|
is_main_process=is_main_process, |
|
weight_name=weight_name, |
|
save_function=save_function, |
|
safe_serialization=safe_serialization, |
|
) |
|
|
|
def _remove_text_encoder_monkey_patch(self): |
|
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder) |
|
self._remove_text_encoder_monkey_patch_classmethod(self.text_encoder_2) |
|
|