add script
Browse files- ted_talks.py +153 -0
ted_talks.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
|
3 |
+
|
4 |
+
_DESCRIPTION = """\
|
5 |
+
Train, validation and test splits for TED talks as in http://phontron.com/data/ted_talks.tar.gz (detokenized)
|
6 |
+
"""
|
7 |
+
|
8 |
+
_CITATION = """\
|
9 |
+
@inproceedings{Ye2018WordEmbeddings,
|
10 |
+
author = {Ye, Qi and Devendra, Sachan and Matthieu, Felix and Sarguna, Padmanabhan and Graham, Neubig},
|
11 |
+
title = {When and Why are pre-trained word embeddings useful for Neural Machine Translation},
|
12 |
+
booktitle = {HLT-NAACL},
|
13 |
+
year = {2018},
|
14 |
+
}
|
15 |
+
"""
|
16 |
+
|
17 |
+
_DATA_URL = "data/TED.tar"
|
18 |
+
|
19 |
+
_LANGUAGES = ["ar", "az", "be", "bg", "bn", "bs", "cs", "da", "de", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fr-ca", "gl", "he", "hi", "hr", "hu", "hy", "id", "it", "ja", "ka", "kk", "ko", "ku", "lt", "mk", "mn", "mr", "ms", "my", "nb", "nl", "pl", "pt", "pt-br", "ro", "ru", "sk", "sl", "sq", "sr", "sv", "ta", "th", "tr", "uk", "ur", "vi", "zh", "zh-cn", "zh-tw"]
|
20 |
+
|
21 |
+
|
22 |
+
class TedTalksConfig(datasets.BuilderConfig):
|
23 |
+
"""BuilderConfig for TED talk dataset."""
|
24 |
+
|
25 |
+
def __init__(self, language_pair=(None, None), **kwargs):
|
26 |
+
# sort such that az_ar is same as ar_az
|
27 |
+
self.language_pair = sorted(language_pair)
|
28 |
+
self.source, self.target = self.language_pair[0], self.language_pair[1]
|
29 |
+
|
30 |
+
name = f"{self.source}_{self.target}"
|
31 |
+
description = f"Parallel sentences in `{self.source}` and `{self.target}`."
|
32 |
+
super(TedTalksConfig, self).__init__(name=name, description=description, **kwargs)
|
33 |
+
|
34 |
+
|
35 |
+
class TedTalks(datasets.GeneratorBasedBuilder):
|
36 |
+
"""TED talk data from http://phontron.com/data/ted_talks.tar.gz."""
|
37 |
+
|
38 |
+
unique_pairs = sorted(set([
|
39 |
+
"_".join(sorted([l1, l2]))
|
40 |
+
for l1 in _LANGUAGES
|
41 |
+
for l2 in _LANGUAGES
|
42 |
+
if l1 != l2
|
43 |
+
]))
|
44 |
+
|
45 |
+
BUILDER_CONFIGS = [
|
46 |
+
TedTalksConfig(
|
47 |
+
language_pair=(pair.split("_")[0], pair.split("_")[1]),
|
48 |
+
version=datasets.Version("1.0.0", ""),
|
49 |
+
)
|
50 |
+
for pair in unique_pairs
|
51 |
+
]
|
52 |
+
|
53 |
+
def _info(self):
|
54 |
+
return datasets.DatasetInfo(
|
55 |
+
description=_DESCRIPTION,
|
56 |
+
features=datasets.Features(
|
57 |
+
{"translation": datasets.features.Translation(languages=self.config.language_pair)}
|
58 |
+
),
|
59 |
+
homepage="https://github.com/neulab/word-embeddings-for-nmt",
|
60 |
+
citation=_CITATION,
|
61 |
+
)
|
62 |
+
|
63 |
+
def _split_generators(self, dl_manager):
|
64 |
+
archive = dl_manager.download(_DATA_URL)
|
65 |
+
|
66 |
+
def _get_overlap(source_file, target_file):
|
67 |
+
for path, f in dl_manager.iter_archive(archive):
|
68 |
+
if path == source_file:
|
69 |
+
source_sentences = f.read().decode("utf-8").split("\n")
|
70 |
+
elif path == target_file:
|
71 |
+
target_sentences = f.read().decode("utf-8").split("\n")
|
72 |
+
|
73 |
+
return len([
|
74 |
+
(src, tgt)
|
75 |
+
for src, tgt
|
76 |
+
in zip(source_sentences, target_sentences)
|
77 |
+
if src != "" and tgt != ""
|
78 |
+
])
|
79 |
+
|
80 |
+
split2tedsplit = {"train": "train", "validation": "dev", "test": "test"}
|
81 |
+
|
82 |
+
overlap = {
|
83 |
+
split: _get_overlap(
|
84 |
+
f"{split}/ted.{split2tedsplit[split]}.{self.config.source}",
|
85 |
+
f"{split}/ted.{split2tedsplit[split]}.{self.config.target}"
|
86 |
+
) for split in ["train", "validation", "test"]
|
87 |
+
}
|
88 |
+
|
89 |
+
generators = []
|
90 |
+
if overlap["train"] > 0:
|
91 |
+
generators.append(
|
92 |
+
datasets.SplitGenerator(
|
93 |
+
name=datasets.Split.TRAIN,
|
94 |
+
gen_kwargs={
|
95 |
+
"source_file": f"train/ted.train.{self.config.source}",
|
96 |
+
"target_file": f"train/ted.train.{self.config.target}",
|
97 |
+
"files": dl_manager.iter_archive(archive),
|
98 |
+
},
|
99 |
+
),
|
100 |
+
)
|
101 |
+
if overlap["validation"] > 0:
|
102 |
+
generators.append(
|
103 |
+
datasets.SplitGenerator(
|
104 |
+
name=datasets.Split.VALIDATION,
|
105 |
+
gen_kwargs={
|
106 |
+
"source_file": f"validation/ted.dev.{self.config.source}",
|
107 |
+
"target_file": f"validation/ted.dev.{self.config.target}",
|
108 |
+
"files": dl_manager.iter_archive(archive),
|
109 |
+
},
|
110 |
+
),
|
111 |
+
)
|
112 |
+
if overlap["test"] > 0:
|
113 |
+
generators.append(
|
114 |
+
datasets.SplitGenerator(
|
115 |
+
name=datasets.Split.TEST,
|
116 |
+
gen_kwargs={
|
117 |
+
"source_file": f"test/ted.test.{self.config.source}",
|
118 |
+
"target_file": f"test/ted.test.{self.config.target}",
|
119 |
+
"files": dl_manager.iter_archive(archive),
|
120 |
+
},
|
121 |
+
),
|
122 |
+
)
|
123 |
+
|
124 |
+
return generators
|
125 |
+
|
126 |
+
|
127 |
+
def _generate_examples(self, source_file, target_file, files):
|
128 |
+
"""Returns examples as raw text."""
|
129 |
+
|
130 |
+
source_sentences, target_sentences = None, None
|
131 |
+
for path, f in files:
|
132 |
+
if path == source_file:
|
133 |
+
source_sentences = f.read().decode("utf-8").split("\n")
|
134 |
+
elif path == target_file:
|
135 |
+
target_sentences = f.read().decode("utf-8").split("\n")
|
136 |
+
|
137 |
+
assert len(target_sentences) == len(source_sentences), (
|
138 |
+
f"Sizes do not match: {len(source_sentences)} vs {len(target_sentences)}."
|
139 |
+
)
|
140 |
+
|
141 |
+
# ignore empty
|
142 |
+
source_target_pairs = [
|
143 |
+
(src, tgt)
|
144 |
+
for src, tgt
|
145 |
+
in zip(source_sentences, target_sentences)
|
146 |
+
if src != "" and tgt != ""
|
147 |
+
]
|
148 |
+
|
149 |
+
if len(source_target_pairs) > 0:
|
150 |
+
source_sentences, target_sentences = zip(*source_target_pairs)
|
151 |
+
|
152 |
+
for idx, (l1, l2) in enumerate(zip(source_sentences, target_sentences)):
|
153 |
+
yield idx, {"translation": {self.config.source: l1, self.config.target: l2}}
|