|
""" |
|
comomunit.py |
|
In this file all architectural components of CoMo-MUNIT are defined. The *logic* is not defined here, but in the *_model.py files. |
|
Most of the code is copied from https://github.com/NVlabs/MUNIT |
|
Thttps://github.com/junyanz/pytorch-CycleGAN-and-pix2pixhere are some additional function to get compatibility with the CycleGAN codebase (https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix) |
|
""" |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import init |
|
import functools |
|
from torch.optim import lr_scheduler |
|
import torch.nn.functional as F |
|
from .functions import init_net, init_weights, get_scheduler |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def define_G_munit(input_nc, output_nc, gen_dim, style_dim, n_downsample, n_res, |
|
pad_type, mlp_dim, activ='relu', init_type = 'kaiming', init_gain=0.02, gpu_ids=[]): |
|
gen = AdaINGen(input_nc, output_nc, gen_dim, style_dim, n_downsample, n_res, activ, pad_type, mlp_dim) |
|
return init_net(gen, init_type=init_type, init_gain = init_gain, gpu_ids = gpu_ids) |
|
|
|
def define_D_munit(input_nc, disc_dim, norm, activ, n_layer, gan_type, num_scales, pad_type, |
|
init_type = 'kaiming', init_gain = 0.02, gpu_ids = [], output_channels = 1, final_function = None): |
|
disc = MsImageDis(input_nc, n_layer, gan_type, disc_dim, norm, activ, num_scales, pad_type, output_channels, final_function = final_function) |
|
return init_net(disc, init_type=init_type, init_gain = init_gain, gpu_ids = gpu_ids) |
|
|
|
def define_DRB_munit(resblocks, dim, norm, activation, pad_type, |
|
init_type = 'kaiming', init_gain = 0.02, gpu_ids = []): |
|
demux = DRB(resblocks, dim, norm, activation, pad_type) |
|
return init_net(demux, init_type = init_type, init_gain = init_gain, gpu_ids = gpu_ids) |
|
|
|
|
|
|
|
|
|
class AdaINGen(nn.Module): |
|
|
|
def __init__(self, input_dim, output_dim, dim, style_dim, n_downsample, n_res, activ, pad_type, mlp_dim): |
|
super(AdaINGen, self).__init__() |
|
|
|
|
|
self.enc_style = StyleEncoder(4, input_dim, dim, style_dim, norm='none', activ=activ, pad_type=pad_type) |
|
|
|
|
|
self.enc_content = ContentEncoder(n_downsample, n_res, input_dim, dim, 'instance', activ, pad_type=pad_type) |
|
self.adainblock = AdaINBlock(n_downsample, n_res, self.enc_content.output_dim, output_dim, res_norm='adain', activ=activ, pad_type=pad_type) |
|
self.dec = DecoderNoAdain(n_downsample, n_res, self.enc_content.output_dim, output_dim, res_norm='adain', activ=activ, pad_type=pad_type) |
|
|
|
self.mlp = MLP(style_dim, self.get_num_adain_params(self.adainblock), mlp_dim, 3, norm='none', activ=activ) |
|
|
|
def forward(self, images): |
|
|
|
content, style_fake = self.encode(images) |
|
images_recon = self.decode(content, style_fake) |
|
return images_recon |
|
|
|
def encode(self, images): |
|
|
|
style_fake = self.enc_style(images) |
|
content = self.enc_content(images) |
|
return content, style_fake |
|
|
|
def assign_adain(self, content, style): |
|
|
|
adain_params = self.mlp(style) |
|
self.assign_adain_params(adain_params, self.adainblock) |
|
features = self.adainblock(content) |
|
return features |
|
|
|
def decode(self, features): |
|
return self.dec(features) |
|
|
|
def assign_adain_params(self, adain_params, model): |
|
|
|
for m in model.modules(): |
|
if m.__class__.__name__ == "AdaptiveInstanceNorm2d": |
|
mean = adain_params[:, :m.num_features] |
|
std = adain_params[:, m.num_features:2*m.num_features] |
|
m.bias = mean.contiguous().view(-1) |
|
m.weight = std.contiguous().view(-1) |
|
if adain_params.size(1) > 2*m.num_features: |
|
adain_params = adain_params[:, 2*m.num_features:] |
|
|
|
def get_num_adain_params(self, model): |
|
|
|
num_adain_params = 0 |
|
for m in model.modules(): |
|
if m.__class__.__name__ == "AdaptiveInstanceNorm2d": |
|
num_adain_params += 2*m.num_features |
|
return num_adain_params |
|
|
|
|
|
class FIN2dCyclic(nn.Module): |
|
def __init__(self, dim): |
|
super().__init__() |
|
self.instance_norm = nn.InstanceNorm2d(dim, affine=False) |
|
self.a_gamma = nn.Parameter(torch.zeros(dim)) |
|
self.b_gamma = nn.Parameter(torch.ones(dim)) |
|
self.a_beta = nn.Parameter(torch.zeros(dim)) |
|
self.b_beta = nn.Parameter(torch.zeros(dim)) |
|
|
|
def forward(self, x, cos, sin): |
|
|
|
|
|
|
|
gamma = self.a_gamma * cos.unsqueeze(-1) + self.b_gamma |
|
beta = self.a_beta * sin.unsqueeze(-1) + self.b_beta |
|
|
|
return self.instance_norm(x) * gamma.unsqueeze(-1).unsqueeze(-1) + beta.unsqueeze(-1).unsqueeze(-1) |
|
|
|
|
|
class DRB(nn.Module): |
|
def __init__(self, n_resblocks, dim, norm, activation, pad_type): |
|
super().__init__() |
|
self.common_features = [] |
|
self.physical_features = [] |
|
self.real_features = [] |
|
self.continuous_features = nn.ModuleList() |
|
|
|
for i in range(0, n_resblocks): |
|
self.common_features += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)] |
|
for i in range(0, n_resblocks): |
|
self.physical_features += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)] |
|
for i in range(0, n_resblocks): |
|
self.real_features += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)] |
|
for i in range(0, n_resblocks): |
|
self.continuous_features.append(ResBlockContinuous(dim, norm='fin', activation=activation, pad_type=pad_type)) |
|
|
|
self.common_features = nn.Sequential(*self.common_features) |
|
self.physical_features = nn.Sequential(*self.physical_features) |
|
self.real_features = nn.Sequential(*self.real_features) |
|
|
|
def forward(self, input_features, continuity_cos, continuity_sin): |
|
common_features = self.common_features(input_features) |
|
physical_features = self.physical_features(input_features) |
|
real_features = self.real_features(input_features) |
|
continuous_features = input_features |
|
for layer in self.continuous_features: |
|
continuous_features = layer(continuous_features, continuity_cos, continuity_sin) |
|
|
|
physical_output_features = common_features + physical_features + continuous_features + input_features |
|
real_output_features = common_features + real_features + continuous_features + input_features |
|
|
|
return real_output_features, physical_output_features |
|
|
|
|
|
class DecoderNoAdain(nn.Module): |
|
def __init__(self, n_upsample, n_res, dim, output_dim, res_norm='adain', activ='relu', pad_type='zero'): |
|
super(DecoderNoAdain, self).__init__() |
|
|
|
self.model = [] |
|
|
|
for i in range(n_upsample): |
|
self.model += [nn.Upsample(scale_factor=2), |
|
Conv2dBlock(dim, dim // 2, 5, 1, 2, norm='layer', activation=activ, pad_type=pad_type)] |
|
dim //= 2 |
|
|
|
self.model += [Conv2dBlock(dim, output_dim, 7, 1, 3, norm='none', activation='tanh', pad_type=pad_type)] |
|
self.model = nn.Sequential(*self.model) |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
|
|
class ResBlockContinuous(nn.Module): |
|
def __init__(self, dim, norm='instance', activation='relu', pad_type='zero'): |
|
super(ResBlockContinuous, self).__init__() |
|
|
|
self.model = nn.ModuleList() |
|
self.model.append(Conv2dBlockContinuous(dim ,dim, 3, 1, 1, norm='fin', activation=activation, pad_type=pad_type)) |
|
self.model.append(Conv2dBlockContinuous(dim ,dim, 3, 1, 1, norm='fin', activation='none', pad_type=pad_type)) |
|
|
|
def forward(self, x, cos_phi, sin_phi): |
|
residual = x |
|
for layer in self.model: |
|
x = layer(x, cos_phi, sin_phi) |
|
|
|
x += residual |
|
return x |
|
|
|
|
|
class Conv2dBlockContinuous(nn.Module): |
|
def __init__(self, input_dim ,output_dim, kernel_size, stride, |
|
padding=0, norm='none', activation='relu', pad_type='zero'): |
|
super(Conv2dBlockContinuous, self).__init__() |
|
self.use_bias = True |
|
|
|
if pad_type == 'reflect': |
|
self.pad = nn.ReflectionPad2d(padding) |
|
elif pad_type == 'replicate': |
|
self.pad = nn.ReplicationPad2d(padding) |
|
elif pad_type == 'zero': |
|
self.pad = nn.ZeroPad2d(padding) |
|
else: |
|
assert 0, "Unsupported padding type: {}".format(pad_type) |
|
|
|
|
|
norm_dim = output_dim |
|
if norm == 'batch': |
|
self.norm = nn.BatchNorm2d(norm_dim) |
|
elif norm == 'instance': |
|
|
|
self.norm = nn.InstanceNorm2d(norm_dim) |
|
elif norm == 'layer': |
|
self.norm = LayerNorm(norm_dim) |
|
elif norm == 'adain': |
|
self.norm = AdaptiveInstanceNorm2d(norm_dim) |
|
elif norm == 'fin': |
|
self.norm = FIN2dCyclic(norm_dim) |
|
elif norm == 'none' or norm == 'spectral': |
|
self.norm = None |
|
else: |
|
assert 0, "Unsupported normalization: {}".format(norm) |
|
|
|
|
|
if activation == 'relu': |
|
self.activation = nn.ReLU(inplace=True) |
|
elif activation == 'lrelu': |
|
self.activation = nn.LeakyReLU(0.2, inplace=True) |
|
elif activation == 'prelu': |
|
self.activation = nn.PReLU() |
|
elif activation == 'selu': |
|
self.activation = nn.SELU(inplace=True) |
|
elif activation == 'tanh': |
|
self.activation = nn.Tanh() |
|
elif activation == 'none': |
|
self.activation = None |
|
else: |
|
assert 0, "Unsupported activation: {}".format(activation) |
|
|
|
|
|
if norm == 'spectral': |
|
self.conv = SpectralNorm(nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)) |
|
else: |
|
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias) |
|
|
|
def forward(self, x, continuity_cos, continuity_sin): |
|
x = self.conv(self.pad(x)) |
|
if self.norm: |
|
x = self.norm(x, continuity_cos, continuity_sin) |
|
if self.activation: |
|
x = self.activation(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
class ResBlocks(nn.Module): |
|
def __init__(self, num_blocks, dim, norm='instance', activation='relu', pad_type='zero'): |
|
super(ResBlocks, self).__init__() |
|
self.model = [] |
|
for i in range(num_blocks): |
|
self.model += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)] |
|
self.model = nn.Sequential(*self.model) |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
class MLP(nn.Module): |
|
def __init__(self, input_dim, output_dim, dim, n_blk, norm='none', activ='relu'): |
|
|
|
super(MLP, self).__init__() |
|
self.model = [] |
|
self.model += [LinearBlock(input_dim, dim, norm=norm, activation=activ)] |
|
for i in range(n_blk - 2): |
|
self.model += [LinearBlock(dim, dim, norm=norm, activation=activ)] |
|
self.model += [LinearBlock(dim, output_dim, norm='none', activation='none')] |
|
self.model = nn.Sequential(*self.model) |
|
|
|
def forward(self, x): |
|
return self.model(x.view(x.size(0), -1)) |
|
|
|
|
|
|
|
class ResBlock(nn.Module): |
|
def __init__(self, dim, norm='instance', activation='relu', pad_type='zero'): |
|
super(ResBlock, self).__init__() |
|
|
|
model = [] |
|
model += [Conv2dBlock(dim ,dim, 3, 1, 1, norm=norm, activation=activation, pad_type=pad_type)] |
|
model += [Conv2dBlock(dim ,dim, 3, 1, 1, norm=norm, activation='none', pad_type=pad_type)] |
|
self.model = nn.Sequential(*model) |
|
|
|
def forward(self, x): |
|
residual = x |
|
out = self.model(x) |
|
out += residual |
|
return out |
|
|
|
class Conv2dBlock(nn.Module): |
|
def __init__(self, input_dim ,output_dim, kernel_size, stride, |
|
padding=0, norm='none', activation='relu', pad_type='zero'): |
|
super(Conv2dBlock, self).__init__() |
|
self.use_bias = True |
|
|
|
if pad_type == 'reflect': |
|
self.pad = nn.ReflectionPad2d(padding) |
|
elif pad_type == 'replicate': |
|
self.pad = nn.ReplicationPad2d(padding) |
|
elif pad_type == 'zero': |
|
self.pad = nn.ZeroPad2d(padding) |
|
else: |
|
assert 0, "Unsupported padding type: {}".format(pad_type) |
|
|
|
|
|
norm_dim = output_dim |
|
if norm == 'batch': |
|
self.norm = nn.BatchNorm2d(norm_dim) |
|
elif norm == 'instance': |
|
|
|
self.norm = nn.InstanceNorm2d(norm_dim) |
|
elif norm == 'layer': |
|
self.norm = LayerNorm(norm_dim) |
|
elif norm == 'adain': |
|
self.norm = AdaptiveInstanceNorm2d(norm_dim) |
|
elif norm == 'none' or norm == 'spectral': |
|
self.norm = None |
|
else: |
|
assert 0, "Unsupported normalization: {}".format(norm) |
|
|
|
|
|
if activation == 'relu': |
|
self.activation = nn.ReLU(inplace=True) |
|
elif activation == 'lrelu': |
|
self.activation = nn.LeakyReLU(0.2, inplace=True) |
|
elif activation == 'prelu': |
|
self.activation = nn.PReLU() |
|
elif activation == 'selu': |
|
self.activation = nn.SELU(inplace=True) |
|
elif activation == 'tanh': |
|
self.activation = nn.Tanh() |
|
elif activation == 'none': |
|
self.activation = None |
|
else: |
|
assert 0, "Unsupported activation: {}".format(activation) |
|
|
|
|
|
if norm == 'spectral': |
|
self.conv = SpectralNorm(nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)) |
|
else: |
|
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias) |
|
|
|
def forward(self, x): |
|
x = self.conv(self.pad(x)) |
|
if self.norm: |
|
x = self.norm(x) |
|
if self.activation: |
|
x = self.activation(x) |
|
return x |
|
|
|
|
|
class LinearBlock(nn.Module): |
|
def __init__(self, input_dim, output_dim, norm='none', activation='relu'): |
|
super(LinearBlock, self).__init__() |
|
use_bias = True |
|
|
|
if norm == 'spectral': |
|
self.fc = SpectralNorm(nn.Linear(input_dim, output_dim, bias=use_bias)) |
|
else: |
|
self.fc = nn.Linear(input_dim, output_dim, bias=use_bias) |
|
|
|
|
|
norm_dim = output_dim |
|
if norm == 'batch': |
|
self.norm = nn.BatchNorm1d(norm_dim) |
|
elif norm == 'instance': |
|
self.norm = nn.InstanceNorm1d(norm_dim) |
|
elif norm == 'layer': |
|
self.norm = LayerNorm(norm_dim) |
|
elif norm == 'none' or norm == 'spectral': |
|
self.norm = None |
|
else: |
|
assert 0, "Unsupported normalization: {}".format(norm) |
|
|
|
|
|
if activation == 'relu': |
|
self.activation = nn.ReLU(inplace=True) |
|
elif activation == 'lrelu': |
|
self.activation = nn.LeakyReLU(0.2, inplace=True) |
|
elif activation == 'prelu': |
|
self.activation = nn.PReLU() |
|
elif activation == 'selu': |
|
self.activation = nn.SELU(inplace=True) |
|
elif activation == 'tanh': |
|
self.activation = nn.Tanh() |
|
elif activation == 'none': |
|
self.activation = None |
|
else: |
|
assert 0, "Unsupported activation: {}".format(activation) |
|
|
|
def forward(self, x): |
|
out = self.fc(x) |
|
if self.norm: |
|
out = self.norm(out) |
|
if self.activation: |
|
out = self.activation(out) |
|
return out |
|
|
|
|
|
class Vgg16(nn.Module): |
|
def __init__(self): |
|
super(Vgg16, self).__init__() |
|
self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1) |
|
self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) |
|
|
|
self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1) |
|
self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1) |
|
|
|
self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1) |
|
self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) |
|
self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) |
|
|
|
self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1) |
|
self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) |
|
self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) |
|
|
|
self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) |
|
self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) |
|
self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) |
|
|
|
def forward(self, X): |
|
h = F.relu(self.conv1_1(X), inplace=True) |
|
h = F.relu(self.conv1_2(h), inplace=True) |
|
|
|
h = F.max_pool2d(h, kernel_size=2, stride=2) |
|
|
|
h = F.relu(self.conv2_1(h), inplace=True) |
|
h = F.relu(self.conv2_2(h), inplace=True) |
|
|
|
h = F.max_pool2d(h, kernel_size=2, stride=2) |
|
|
|
h = F.relu(self.conv3_1(h), inplace=True) |
|
h = F.relu(self.conv3_2(h), inplace=True) |
|
h = F.relu(self.conv3_3(h), inplace=True) |
|
|
|
h = F.max_pool2d(h, kernel_size=2, stride=2) |
|
|
|
h = F.relu(self.conv4_1(h), inplace=True) |
|
h = F.relu(self.conv4_2(h), inplace=True) |
|
h = F.relu(self.conv4_3(h), inplace=True) |
|
|
|
|
|
h = F.relu(self.conv5_1(h), inplace=True) |
|
h = F.relu(self.conv5_2(h), inplace=True) |
|
h = F.relu(self.conv5_3(h), inplace=True) |
|
relu5_3 = h |
|
|
|
return relu5_3 |
|
|
|
|
|
|
|
class AdaptiveInstanceNorm2d(nn.Module): |
|
def __init__(self, num_features, eps=1e-5, momentum=0.1): |
|
super(AdaptiveInstanceNorm2d, self).__init__() |
|
self.num_features = num_features |
|
self.eps = eps |
|
self.momentum = momentum |
|
|
|
self.weight = None |
|
self.bias = None |
|
|
|
self.register_buffer('running_mean', torch.zeros(num_features)) |
|
self.register_buffer('running_var', torch.ones(num_features)) |
|
|
|
def forward(self, x): |
|
assert self.weight is not None and self.bias is not None, "Please assign weight and bias before calling AdaIN!" |
|
b, c = x.size(0), x.size(1) |
|
|
|
if self.weight.type() == 'torch.cuda.HalfTensor': |
|
running_mean = self.running_mean.repeat(b).to(torch.float16) |
|
running_var = self.running_var.repeat(b).to(torch.float16) |
|
else: |
|
running_mean = self.running_mean.repeat(b) |
|
running_var = self.running_var.repeat(b) |
|
|
|
|
|
x_reshaped = x.contiguous().view(1, b * c, *x.size()[2:]) |
|
|
|
out = F.batch_norm( |
|
x_reshaped, running_mean, running_var, self.weight, self.bias, |
|
True, self.momentum, self.eps) |
|
|
|
return out.view(b, c, *x.size()[2:]) |
|
|
|
def __repr__(self): |
|
return self.__class__.__name__ + '(' + str(self.num_features) + ')' |
|
|
|
|
|
class LayerNorm(nn.Module): |
|
def __init__(self, num_features, eps=1e-5, affine=True): |
|
super(LayerNorm, self).__init__() |
|
self.num_features = num_features |
|
self.affine = affine |
|
self.eps = eps |
|
|
|
if self.affine: |
|
self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_()) |
|
self.beta = nn.Parameter(torch.zeros(num_features)) |
|
|
|
def forward(self, x): |
|
shape = [-1] + [1] * (x.dim() - 1) |
|
|
|
if x.size(0) == 1: |
|
|
|
mean = x.view(-1).mean().view(*shape) |
|
std = x.view(-1).std().view(*shape) |
|
else: |
|
mean = x.view(x.size(0), -1).mean(1).view(*shape) |
|
std = x.view(x.size(0), -1).std(1).view(*shape) |
|
|
|
x = (x - mean) / (std + self.eps) |
|
|
|
if self.affine: |
|
shape = [1, -1] + [1] * (x.dim() - 2) |
|
x = x * self.gamma.view(*shape) + self.beta.view(*shape) |
|
return x |
|
|
|
def l2normalize(v, eps=1e-12): |
|
return v / (v.norm() + eps) |
|
|
|
|
|
class SpectralNorm(nn.Module): |
|
""" |
|
Based on the paper "Spectral Normalization for Generative Adversarial Networks" by Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida |
|
and the Pytorch implementation https://github.com/christiancosgrove/pytorch-spectral-normalization-gan |
|
""" |
|
def __init__(self, module, name='weight', power_iterations=1): |
|
super(SpectralNorm, self).__init__() |
|
self.module = module |
|
self.name = name |
|
self.power_iterations = power_iterations |
|
if not self._made_params(): |
|
self._make_params() |
|
|
|
def _update_u_v(self): |
|
u = getattr(self.module, self.name + "_u") |
|
v = getattr(self.module, self.name + "_v") |
|
w = getattr(self.module, self.name + "_bar") |
|
|
|
height = w.data.shape[0] |
|
for _ in range(self.power_iterations): |
|
v.data = l2normalize(torch.mv(torch.t(w.view(height,-1).data), u.data)) |
|
u.data = l2normalize(torch.mv(w.view(height,-1).data, v.data)) |
|
|
|
|
|
sigma = u.dot(w.view(height, -1).mv(v)) |
|
setattr(self.module, self.name, w / sigma.expand_as(w)) |
|
|
|
def _made_params(self): |
|
try: |
|
u = getattr(self.module, self.name + "_u") |
|
v = getattr(self.module, self.name + "_v") |
|
w = getattr(self.module, self.name + "_bar") |
|
return True |
|
except AttributeError: |
|
return False |
|
|
|
|
|
def _make_params(self): |
|
w = getattr(self.module, self.name) |
|
|
|
height = w.data.shape[0] |
|
width = w.view(height, -1).data.shape[1] |
|
|
|
u = nn.Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) |
|
v = nn.Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) |
|
u.data = l2normalize(u.data) |
|
v.data = l2normalize(v.data) |
|
w_bar = nn.Parameter(w.data) |
|
|
|
del self.module._parameters[self.name] |
|
|
|
self.module.register_parameter(self.name + "_u", u) |
|
self.module.register_parameter(self.name + "_v", v) |
|
self.module.register_parameter(self.name + "_bar", w_bar) |
|
|
|
|
|
def forward(self, *args): |
|
self._update_u_v() |
|
return self.module.forward(*args) |
|
|
|
class MsImageDis(nn.Module): |
|
|
|
def __init__(self, input_dim, n_layer, gan_type, dim, norm, activ, num_scales, pad_type, output_channels = 1, final_function = None): |
|
super(MsImageDis, self).__init__() |
|
self.n_layer = n_layer |
|
self.gan_type = gan_type |
|
self.output_channels = output_channels |
|
self.dim = dim |
|
self.norm = norm |
|
self.activ = activ |
|
self.num_scales = num_scales |
|
self.pad_type = pad_type |
|
self.input_dim = input_dim |
|
self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False) |
|
self.cnns = nn.ModuleList() |
|
self.final_function = final_function |
|
for _ in range(self.num_scales): |
|
self.cnns.append(self._make_net()) |
|
|
|
def _make_net(self): |
|
dim = self.dim |
|
cnn_x = [] |
|
cnn_x += [Conv2dBlock(self.input_dim, dim, 4, 2, 1, norm='none', activation=self.activ, pad_type=self.pad_type)] |
|
for i in range(self.n_layer - 1): |
|
cnn_x += [Conv2dBlock(dim, dim * 2, 4, 2, 1, norm=self.norm, activation=self.activ, pad_type=self.pad_type)] |
|
dim *= 2 |
|
cnn_x += [nn.Conv2d(dim, self.output_channels, 1, 1, 0)] |
|
cnn_x = nn.Sequential(*cnn_x) |
|
return cnn_x |
|
|
|
def forward(self, x): |
|
outputs = [] |
|
for model in self.cnns: |
|
output = model(x) |
|
if self.final_function is not None: |
|
output = self.final_function(output) |
|
outputs.append(output) |
|
x = self.downsample(x) |
|
return outputs |
|
|
|
def calc_dis_loss(self, input_fake, input_real): |
|
|
|
outs0 = self.forward(input_fake) |
|
outs1 = self.forward(input_real) |
|
loss = 0 |
|
|
|
for it, (out0, out1) in enumerate(zip(outs0, outs1)): |
|
if self.gan_type == 'lsgan': |
|
loss += torch.mean((out0 - 0)**2) + torch.mean((out1 - 1)**2) |
|
elif self.gan_type == 'nsgan': |
|
all0 = torch.zeros_like(out0) |
|
all1 = torch.ones_like(out1) |
|
loss += torch.mean(F.binary_cross_entropy(F.sigmoid(out0), all0) + |
|
F.binary_cross_entropy(F.sigmoid(out1), all1)) |
|
else: |
|
assert 0, "Unsupported GAN type: {}".format(self.gan_type) |
|
return loss |
|
|
|
def calc_gen_loss(self, input_fake): |
|
|
|
outs0 = self.forward(input_fake) |
|
loss = 0 |
|
for it, (out0) in enumerate(outs0): |
|
if self.gan_type == 'lsgan': |
|
loss += torch.mean((out0 - 1)**2) |
|
elif self.gan_type == 'nsgan': |
|
all1 = torch.ones_like(out0.data) |
|
loss += torch.mean(F.binary_cross_entropy(F.sigmoid(out0), all1)) |
|
else: |
|
assert 0, "Unsupported GAN type: {}".format(self.gan_type) |
|
return loss |
|
|
|
class StyleEncoder(nn.Module): |
|
def __init__(self, n_downsample, input_dim, dim, style_dim, norm, activ, pad_type): |
|
super(StyleEncoder, self).__init__() |
|
self.model = [] |
|
self.model += [Conv2dBlock(input_dim, dim, 7, 1, 3, norm=norm, activation=activ, pad_type=pad_type)] |
|
for i in range(2): |
|
self.model += [Conv2dBlock(dim, 2 * dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)] |
|
dim *= 2 |
|
for i in range(n_downsample - 2): |
|
self.model += [Conv2dBlock(dim, dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)] |
|
self.model += [nn.AdaptiveAvgPool2d(1)] |
|
self.model += [nn.Conv2d(dim, style_dim, 1, 1, 0)] |
|
self.model = nn.Sequential(*self.model) |
|
self.output_dim = dim |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
class ContentEncoder(nn.Module): |
|
def __init__(self, n_downsample, n_res, input_dim, dim, norm, activ, pad_type): |
|
super(ContentEncoder, self).__init__() |
|
self.model = [] |
|
self.model += [Conv2dBlock(input_dim, dim, 7, 1, 3, norm=norm, activation=activ, pad_type=pad_type)] |
|
|
|
for i in range(n_downsample): |
|
self.model += [Conv2dBlock(dim, 2 * dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)] |
|
dim *= 2 |
|
|
|
self.model += [ResBlocks(n_res, dim, norm=norm, activation=activ, pad_type=pad_type)] |
|
self.model = nn.Sequential(*self.model) |
|
self.output_dim = dim |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
class AdaINBlock(nn.Module): |
|
def __init__(self, n_upsample, n_res, dim, output_dim, res_norm='adain', activ='relu', pad_type='zero'): |
|
super(AdaINBlock, self).__init__() |
|
|
|
self.model = [] |
|
|
|
self.model += [ResBlocks(n_res, dim, res_norm, activ, pad_type=pad_type)] |
|
self.model = nn.Sequential(*self.model) |
|
|
|
def forward(self, x): |
|
return self.model(x) |
|
|
|
|