""" comomunit.py In this file all architectural components of CoMo-MUNIT are defined. The *logic* is not defined here, but in the *_model.py files. Most of the code is copied from https://github.com/NVlabs/MUNIT Thttps://github.com/junyanz/pytorch-CycleGAN-and-pix2pixhere are some additional function to get compatibility with the CycleGAN codebase (https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix) """ import torch import torch.nn as nn from torch.nn import init import functools from torch.optim import lr_scheduler import torch.nn.functional as F from .functions import init_net, init_weights, get_scheduler ######################################################################################################################## # MUNIT architecture ######################################################################################################################## ## Functions to get generator / discriminator / DRB def define_G_munit(input_nc, output_nc, gen_dim, style_dim, n_downsample, n_res, pad_type, mlp_dim, activ='relu', init_type = 'kaiming', init_gain=0.02, gpu_ids=[]): gen = AdaINGen(input_nc, output_nc, gen_dim, style_dim, n_downsample, n_res, activ, pad_type, mlp_dim) return init_net(gen, init_type=init_type, init_gain = init_gain, gpu_ids = gpu_ids) def define_D_munit(input_nc, disc_dim, norm, activ, n_layer, gan_type, num_scales, pad_type, init_type = 'kaiming', init_gain = 0.02, gpu_ids = [], output_channels = 1, final_function = None): disc = MsImageDis(input_nc, n_layer, gan_type, disc_dim, norm, activ, num_scales, pad_type, output_channels, final_function = final_function) return init_net(disc, init_type=init_type, init_gain = init_gain, gpu_ids = gpu_ids) def define_DRB_munit(resblocks, dim, norm, activation, pad_type, init_type = 'kaiming', init_gain = 0.02, gpu_ids = []): demux = DRB(resblocks, dim, norm, activation, pad_type) return init_net(demux, init_type = init_type, init_gain = init_gain, gpu_ids = gpu_ids) # This class has been strongly modified from MUNIT default version. We split the default MUNIT decoder # in AdaINBlock + DecoderNoAdain because the DRB must be placed between the two. encode/assign_adain/decode # are called by the network logic following CoMo-MUNIT implementation. class AdaINGen(nn.Module): # AdaIN auto-encoder architecture def __init__(self, input_dim, output_dim, dim, style_dim, n_downsample, n_res, activ, pad_type, mlp_dim): super(AdaINGen, self).__init__() # style encoder self.enc_style = StyleEncoder(4, input_dim, dim, style_dim, norm='none', activ=activ, pad_type=pad_type) # content encoder self.enc_content = ContentEncoder(n_downsample, n_res, input_dim, dim, 'instance', activ, pad_type=pad_type) self.adainblock = AdaINBlock(n_downsample, n_res, self.enc_content.output_dim, output_dim, res_norm='adain', activ=activ, pad_type=pad_type) self.dec = DecoderNoAdain(n_downsample, n_res, self.enc_content.output_dim, output_dim, res_norm='adain', activ=activ, pad_type=pad_type) # MLP to generate AdaIN parameters self.mlp = MLP(style_dim, self.get_num_adain_params(self.adainblock), mlp_dim, 3, norm='none', activ=activ) def forward(self, images): # reconstruct an image content, style_fake = self.encode(images) images_recon = self.decode(content, style_fake) return images_recon def encode(self, images): # encode an image to its content and style codes style_fake = self.enc_style(images) content = self.enc_content(images) return content, style_fake def assign_adain(self, content, style): # decode content and style codes to an image adain_params = self.mlp(style) self.assign_adain_params(adain_params, self.adainblock) features = self.adainblock(content) return features def decode(self, features): return self.dec(features) def assign_adain_params(self, adain_params, model): # assign the adain_params to the AdaIN layers in model for m in model.modules(): if m.__class__.__name__ == "AdaptiveInstanceNorm2d": mean = adain_params[:, :m.num_features] std = adain_params[:, m.num_features:2*m.num_features] m.bias = mean.contiguous().view(-1) m.weight = std.contiguous().view(-1) if adain_params.size(1) > 2*m.num_features: adain_params = adain_params[:, 2*m.num_features:] def get_num_adain_params(self, model): # return the number of AdaIN parameters needed by the model num_adain_params = 0 for m in model.modules(): if m.__class__.__name__ == "AdaptiveInstanceNorm2d": num_adain_params += 2*m.num_features return num_adain_params # This is the FIN layer for cyclic encoding. It's our contribution and it does not exist in MUNIT. class FIN2dCyclic(nn.Module): def __init__(self, dim): super().__init__() self.instance_norm = nn.InstanceNorm2d(dim, affine=False) self.a_gamma = nn.Parameter(torch.zeros(dim)) self.b_gamma = nn.Parameter(torch.ones(dim)) self.a_beta = nn.Parameter(torch.zeros(dim)) self.b_beta = nn.Parameter(torch.zeros(dim)) def forward(self, x, cos, sin): # The only way to encode something cyclic is to map gamma and beta to an ellipse point (x,y). # We are trying to learn their cyclic manner associating cos(continuity) to gamma and sin(continuity to beta) # Sin and cos are randomly sampled between -1 and 1, we know that they will be associated to one point gamma = self.a_gamma * cos.unsqueeze(-1) + self.b_gamma beta = self.a_beta * sin.unsqueeze(-1) + self.b_beta return self.instance_norm(x) * gamma.unsqueeze(-1).unsqueeze(-1) + beta.unsqueeze(-1).unsqueeze(-1) # This is the DRB implementation, and it does not exist in MUNIT. class DRB(nn.Module): def __init__(self, n_resblocks, dim, norm, activation, pad_type): super().__init__() self.common_features = [] self.physical_features = [] self.real_features = [] self.continuous_features = nn.ModuleList() for i in range(0, n_resblocks): self.common_features += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)] for i in range(0, n_resblocks): self.physical_features += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)] for i in range(0, n_resblocks): self.real_features += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)] for i in range(0, n_resblocks): self.continuous_features.append(ResBlockContinuous(dim, norm='fin', activation=activation, pad_type=pad_type)) self.common_features = nn.Sequential(*self.common_features) self.physical_features = nn.Sequential(*self.physical_features) self.real_features = nn.Sequential(*self.real_features) def forward(self, input_features, continuity_cos, continuity_sin): common_features = self.common_features(input_features) physical_features = self.physical_features(input_features) real_features = self.real_features(input_features) continuous_features = input_features for layer in self.continuous_features: continuous_features = layer(continuous_features, continuity_cos, continuity_sin) physical_output_features = common_features + physical_features + continuous_features + input_features real_output_features = common_features + real_features + continuous_features + input_features return real_output_features, physical_output_features # Again, the default decoder is with adain, but we separated the two. class DecoderNoAdain(nn.Module): def __init__(self, n_upsample, n_res, dim, output_dim, res_norm='adain', activ='relu', pad_type='zero'): super(DecoderNoAdain, self).__init__() self.model = [] # upsampling blocks for i in range(n_upsample): self.model += [nn.Upsample(scale_factor=2), Conv2dBlock(dim, dim // 2, 5, 1, 2, norm='layer', activation=activ, pad_type=pad_type)] dim //= 2 # use reflection padding in the last conv layer self.model += [Conv2dBlock(dim, output_dim, 7, 1, 3, norm='none', activation='tanh', pad_type=pad_type)] self.model = nn.Sequential(*self.model) def forward(self, x): return self.model(x) # This is a residual block with FIN layers inserted. class ResBlockContinuous(nn.Module): def __init__(self, dim, norm='instance', activation='relu', pad_type='zero'): super(ResBlockContinuous, self).__init__() self.model = nn.ModuleList() self.model.append(Conv2dBlockContinuous(dim ,dim, 3, 1, 1, norm='fin', activation=activation, pad_type=pad_type)) self.model.append(Conv2dBlockContinuous(dim ,dim, 3, 1, 1, norm='fin', activation='none', pad_type=pad_type)) def forward(self, x, cos_phi, sin_phi): residual = x for layer in self.model: x = layer(x, cos_phi, sin_phi) x += residual return x # This is a convolutional block+nonlinear+norm with support for FIN layers as normalization strategy. class Conv2dBlockContinuous(nn.Module): def __init__(self, input_dim ,output_dim, kernel_size, stride, padding=0, norm='none', activation='relu', pad_type='zero'): super(Conv2dBlockContinuous, self).__init__() self.use_bias = True # initialize padding if pad_type == 'reflect': self.pad = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': self.pad = nn.ReplicationPad2d(padding) elif pad_type == 'zero': self.pad = nn.ZeroPad2d(padding) else: assert 0, "Unsupported padding type: {}".format(pad_type) # initialize normalization norm_dim = output_dim if norm == 'batch': self.norm = nn.BatchNorm2d(norm_dim) elif norm == 'instance': #self.norm = nn.InstanceNorm2d(norm_dim, track_running_stats=True) self.norm = nn.InstanceNorm2d(norm_dim) elif norm == 'layer': self.norm = LayerNorm(norm_dim) elif norm == 'adain': self.norm = AdaptiveInstanceNorm2d(norm_dim) elif norm == 'fin': self.norm = FIN2dCyclic(norm_dim) elif norm == 'none' or norm == 'spectral': self.norm = None else: assert 0, "Unsupported normalization: {}".format(norm) # initialize activation if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activation == 'lrelu': self.activation = nn.LeakyReLU(0.2, inplace=True) elif activation == 'prelu': self.activation = nn.PReLU() elif activation == 'selu': self.activation = nn.SELU(inplace=True) elif activation == 'tanh': self.activation = nn.Tanh() elif activation == 'none': self.activation = None else: assert 0, "Unsupported activation: {}".format(activation) # initialize convolution if norm == 'spectral': self.conv = SpectralNorm(nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)) else: self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias) def forward(self, x, continuity_cos, continuity_sin): x = self.conv(self.pad(x)) if self.norm: x = self.norm(x, continuity_cos, continuity_sin) if self.activation: x = self.activation(x) return x ################################################################################## # All below there are MUNIT default blocks. ################################################################################## class ResBlocks(nn.Module): def __init__(self, num_blocks, dim, norm='instance', activation='relu', pad_type='zero'): super(ResBlocks, self).__init__() self.model = [] for i in range(num_blocks): self.model += [ResBlock(dim, norm=norm, activation=activation, pad_type=pad_type)] self.model = nn.Sequential(*self.model) def forward(self, x): return self.model(x) class MLP(nn.Module): def __init__(self, input_dim, output_dim, dim, n_blk, norm='none', activ='relu'): super(MLP, self).__init__() self.model = [] self.model += [LinearBlock(input_dim, dim, norm=norm, activation=activ)] for i in range(n_blk - 2): self.model += [LinearBlock(dim, dim, norm=norm, activation=activ)] self.model += [LinearBlock(dim, output_dim, norm='none', activation='none')] # no output activations self.model = nn.Sequential(*self.model) def forward(self, x): return self.model(x.view(x.size(0), -1)) class ResBlock(nn.Module): def __init__(self, dim, norm='instance', activation='relu', pad_type='zero'): super(ResBlock, self).__init__() model = [] model += [Conv2dBlock(dim ,dim, 3, 1, 1, norm=norm, activation=activation, pad_type=pad_type)] model += [Conv2dBlock(dim ,dim, 3, 1, 1, norm=norm, activation='none', pad_type=pad_type)] self.model = nn.Sequential(*model) def forward(self, x): residual = x out = self.model(x) out += residual return out class Conv2dBlock(nn.Module): def __init__(self, input_dim ,output_dim, kernel_size, stride, padding=0, norm='none', activation='relu', pad_type='zero'): super(Conv2dBlock, self).__init__() self.use_bias = True # initialize padding if pad_type == 'reflect': self.pad = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': self.pad = nn.ReplicationPad2d(padding) elif pad_type == 'zero': self.pad = nn.ZeroPad2d(padding) else: assert 0, "Unsupported padding type: {}".format(pad_type) # initialize normalization norm_dim = output_dim if norm == 'batch': self.norm = nn.BatchNorm2d(norm_dim) elif norm == 'instance': #self.norm = nn.InstanceNorm2d(norm_dim, track_running_stats=True) self.norm = nn.InstanceNorm2d(norm_dim) elif norm == 'layer': self.norm = LayerNorm(norm_dim) elif norm == 'adain': self.norm = AdaptiveInstanceNorm2d(norm_dim) elif norm == 'none' or norm == 'spectral': self.norm = None else: assert 0, "Unsupported normalization: {}".format(norm) # initialize activation if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activation == 'lrelu': self.activation = nn.LeakyReLU(0.2, inplace=True) elif activation == 'prelu': self.activation = nn.PReLU() elif activation == 'selu': self.activation = nn.SELU(inplace=True) elif activation == 'tanh': self.activation = nn.Tanh() elif activation == 'none': self.activation = None else: assert 0, "Unsupported activation: {}".format(activation) # initialize convolution if norm == 'spectral': self.conv = SpectralNorm(nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)) else: self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias) def forward(self, x): x = self.conv(self.pad(x)) if self.norm: x = self.norm(x) if self.activation: x = self.activation(x) return x class LinearBlock(nn.Module): def __init__(self, input_dim, output_dim, norm='none', activation='relu'): super(LinearBlock, self).__init__() use_bias = True # initialize fully connected layer if norm == 'spectral': self.fc = SpectralNorm(nn.Linear(input_dim, output_dim, bias=use_bias)) else: self.fc = nn.Linear(input_dim, output_dim, bias=use_bias) # initialize normalization norm_dim = output_dim if norm == 'batch': self.norm = nn.BatchNorm1d(norm_dim) elif norm == 'instance': self.norm = nn.InstanceNorm1d(norm_dim) elif norm == 'layer': self.norm = LayerNorm(norm_dim) elif norm == 'none' or norm == 'spectral': self.norm = None else: assert 0, "Unsupported normalization: {}".format(norm) # initialize activation if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activation == 'lrelu': self.activation = nn.LeakyReLU(0.2, inplace=True) elif activation == 'prelu': self.activation = nn.PReLU() elif activation == 'selu': self.activation = nn.SELU(inplace=True) elif activation == 'tanh': self.activation = nn.Tanh() elif activation == 'none': self.activation = None else: assert 0, "Unsupported activation: {}".format(activation) def forward(self, x): out = self.fc(x) if self.norm: out = self.norm(out) if self.activation: out = self.activation(out) return out class Vgg16(nn.Module): def __init__(self): super(Vgg16, self).__init__() self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1) self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1) self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1) self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1) self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1) self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) def forward(self, X): h = F.relu(self.conv1_1(X), inplace=True) h = F.relu(self.conv1_2(h), inplace=True) # relu1_2 = h h = F.max_pool2d(h, kernel_size=2, stride=2) h = F.relu(self.conv2_1(h), inplace=True) h = F.relu(self.conv2_2(h), inplace=True) # relu2_2 = h h = F.max_pool2d(h, kernel_size=2, stride=2) h = F.relu(self.conv3_1(h), inplace=True) h = F.relu(self.conv3_2(h), inplace=True) h = F.relu(self.conv3_3(h), inplace=True) # relu3_3 = h h = F.max_pool2d(h, kernel_size=2, stride=2) h = F.relu(self.conv4_1(h), inplace=True) h = F.relu(self.conv4_2(h), inplace=True) h = F.relu(self.conv4_3(h), inplace=True) # relu4_3 = h h = F.relu(self.conv5_1(h), inplace=True) h = F.relu(self.conv5_2(h), inplace=True) h = F.relu(self.conv5_3(h), inplace=True) relu5_3 = h return relu5_3 # return [relu1_2, relu2_2, relu3_3, relu4_3] class AdaptiveInstanceNorm2d(nn.Module): def __init__(self, num_features, eps=1e-5, momentum=0.1): super(AdaptiveInstanceNorm2d, self).__init__() self.num_features = num_features self.eps = eps self.momentum = momentum # weight and bias are dynamically assigned self.weight = None self.bias = None # just dummy buffers, not used self.register_buffer('running_mean', torch.zeros(num_features)) self.register_buffer('running_var', torch.ones(num_features)) def forward(self, x): assert self.weight is not None and self.bias is not None, "Please assign weight and bias before calling AdaIN!" b, c = x.size(0), x.size(1) if self.weight.type() == 'torch.cuda.HalfTensor': running_mean = self.running_mean.repeat(b).to(torch.float16) running_var = self.running_var.repeat(b).to(torch.float16) else: running_mean = self.running_mean.repeat(b) running_var = self.running_var.repeat(b) # Apply instance norm x_reshaped = x.contiguous().view(1, b * c, *x.size()[2:]) out = F.batch_norm( x_reshaped, running_mean, running_var, self.weight, self.bias, True, self.momentum, self.eps) return out.view(b, c, *x.size()[2:]) def __repr__(self): return self.__class__.__name__ + '(' + str(self.num_features) + ')' class LayerNorm(nn.Module): def __init__(self, num_features, eps=1e-5, affine=True): super(LayerNorm, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps if self.affine: self.gamma = nn.Parameter(torch.Tensor(num_features).uniform_()) self.beta = nn.Parameter(torch.zeros(num_features)) def forward(self, x): shape = [-1] + [1] * (x.dim() - 1) # print(x.size()) if x.size(0) == 1: # These two lines run much faster in pytorch 0.4 than the two lines listed below. mean = x.view(-1).mean().view(*shape) std = x.view(-1).std().view(*shape) else: mean = x.view(x.size(0), -1).mean(1).view(*shape) std = x.view(x.size(0), -1).std(1).view(*shape) x = (x - mean) / (std + self.eps) if self.affine: shape = [1, -1] + [1] * (x.dim() - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x def l2normalize(v, eps=1e-12): return v / (v.norm() + eps) class SpectralNorm(nn.Module): """ Based on the paper "Spectral Normalization for Generative Adversarial Networks" by Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida and the Pytorch implementation https://github.com/christiancosgrove/pytorch-spectral-normalization-gan """ def __init__(self, module, name='weight', power_iterations=1): super(SpectralNorm, self).__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + "_u") v = getattr(self.module, self.name + "_v") w = getattr(self.module, self.name + "_bar") height = w.data.shape[0] for _ in range(self.power_iterations): v.data = l2normalize(torch.mv(torch.t(w.view(height,-1).data), u.data)) u.data = l2normalize(torch.mv(w.view(height,-1).data, v.data)) # sigma = torch.dot(u.data, torch.mv(w.view(height,-1).data, v.data)) sigma = u.dot(w.view(height, -1).mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: u = getattr(self.module, self.name + "_u") v = getattr(self.module, self.name + "_v") w = getattr(self.module, self.name + "_bar") return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] width = w.view(height, -1).data.shape[1] u = nn.Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = nn.Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = nn.Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + "_u", u) self.module.register_parameter(self.name + "_v", v) self.module.register_parameter(self.name + "_bar", w_bar) def forward(self, *args): self._update_u_v() return self.module.forward(*args) class MsImageDis(nn.Module): # Multi-scale discriminator architecture def __init__(self, input_dim, n_layer, gan_type, dim, norm, activ, num_scales, pad_type, output_channels = 1, final_function = None): super(MsImageDis, self).__init__() self.n_layer = n_layer self.gan_type = gan_type self.output_channels = output_channels self.dim = dim self.norm = norm self.activ = activ self.num_scales = num_scales self.pad_type = pad_type self.input_dim = input_dim self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False) self.cnns = nn.ModuleList() self.final_function = final_function for _ in range(self.num_scales): self.cnns.append(self._make_net()) def _make_net(self): dim = self.dim cnn_x = [] cnn_x += [Conv2dBlock(self.input_dim, dim, 4, 2, 1, norm='none', activation=self.activ, pad_type=self.pad_type)] for i in range(self.n_layer - 1): cnn_x += [Conv2dBlock(dim, dim * 2, 4, 2, 1, norm=self.norm, activation=self.activ, pad_type=self.pad_type)] dim *= 2 cnn_x += [nn.Conv2d(dim, self.output_channels, 1, 1, 0)] cnn_x = nn.Sequential(*cnn_x) return cnn_x def forward(self, x): outputs = [] for model in self.cnns: output = model(x) if self.final_function is not None: output = self.final_function(output) outputs.append(output) x = self.downsample(x) return outputs def calc_dis_loss(self, input_fake, input_real): # calculate the loss to train D outs0 = self.forward(input_fake) outs1 = self.forward(input_real) loss = 0 for it, (out0, out1) in enumerate(zip(outs0, outs1)): if self.gan_type == 'lsgan': loss += torch.mean((out0 - 0)**2) + torch.mean((out1 - 1)**2) elif self.gan_type == 'nsgan': all0 = torch.zeros_like(out0) all1 = torch.ones_like(out1) loss += torch.mean(F.binary_cross_entropy(F.sigmoid(out0), all0) + F.binary_cross_entropy(F.sigmoid(out1), all1)) else: assert 0, "Unsupported GAN type: {}".format(self.gan_type) return loss def calc_gen_loss(self, input_fake): # calculate the loss to train G outs0 = self.forward(input_fake) loss = 0 for it, (out0) in enumerate(outs0): if self.gan_type == 'lsgan': loss += torch.mean((out0 - 1)**2) # LSGAN elif self.gan_type == 'nsgan': all1 = torch.ones_like(out0.data) loss += torch.mean(F.binary_cross_entropy(F.sigmoid(out0), all1)) else: assert 0, "Unsupported GAN type: {}".format(self.gan_type) return loss class StyleEncoder(nn.Module): def __init__(self, n_downsample, input_dim, dim, style_dim, norm, activ, pad_type): super(StyleEncoder, self).__init__() self.model = [] self.model += [Conv2dBlock(input_dim, dim, 7, 1, 3, norm=norm, activation=activ, pad_type=pad_type)] for i in range(2): self.model += [Conv2dBlock(dim, 2 * dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)] dim *= 2 for i in range(n_downsample - 2): self.model += [Conv2dBlock(dim, dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)] self.model += [nn.AdaptiveAvgPool2d(1)] # global average pooling self.model += [nn.Conv2d(dim, style_dim, 1, 1, 0)] self.model = nn.Sequential(*self.model) self.output_dim = dim def forward(self, x): return self.model(x) class ContentEncoder(nn.Module): def __init__(self, n_downsample, n_res, input_dim, dim, norm, activ, pad_type): super(ContentEncoder, self).__init__() self.model = [] self.model += [Conv2dBlock(input_dim, dim, 7, 1, 3, norm=norm, activation=activ, pad_type=pad_type)] # downsampling blocks for i in range(n_downsample): self.model += [Conv2dBlock(dim, 2 * dim, 4, 2, 1, norm=norm, activation=activ, pad_type=pad_type)] dim *= 2 # residual blocks self.model += [ResBlocks(n_res, dim, norm=norm, activation=activ, pad_type=pad_type)] self.model = nn.Sequential(*self.model) self.output_dim = dim def forward(self, x): return self.model(x) class AdaINBlock(nn.Module): def __init__(self, n_upsample, n_res, dim, output_dim, res_norm='adain', activ='relu', pad_type='zero'): super(AdaINBlock, self).__init__() self.model = [] # AdaIN residual blocks self.model += [ResBlocks(n_res, dim, res_norm, activ, pad_type=pad_type)] self.model = nn.Sequential(*self.model) def forward(self, x): return self.model(x)