|
|
|
""" Model Benchmark Script |
|
|
|
An inference and train step benchmark script for timm models. |
|
|
|
Hacked together by Ross Wightman (https://github.com/rwightman) |
|
""" |
|
import argparse |
|
import csv |
|
import json |
|
import logging |
|
import time |
|
from collections import OrderedDict |
|
from contextlib import suppress |
|
from functools import partial |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.parallel |
|
|
|
from timm.data import resolve_data_config |
|
from timm.layers import set_fast_norm |
|
from timm.models import create_model, is_model, list_models |
|
from timm.optim import create_optimizer_v2 |
|
from timm.utils import setup_default_logging, set_jit_fuser, decay_batch_step, check_batch_size_retry, ParseKwargs,\ |
|
reparameterize_model |
|
|
|
has_apex = False |
|
try: |
|
from apex import amp |
|
has_apex = True |
|
except ImportError: |
|
pass |
|
|
|
try: |
|
from deepspeed.profiling.flops_profiler import get_model_profile |
|
has_deepspeed_profiling = True |
|
except ImportError as e: |
|
has_deepspeed_profiling = False |
|
|
|
try: |
|
from fvcore.nn import FlopCountAnalysis, flop_count_str, ActivationCountAnalysis |
|
has_fvcore_profiling = True |
|
except ImportError as e: |
|
FlopCountAnalysis = None |
|
has_fvcore_profiling = False |
|
|
|
try: |
|
from functorch.compile import memory_efficient_fusion |
|
has_functorch = True |
|
except ImportError as e: |
|
has_functorch = False |
|
|
|
has_compile = hasattr(torch, 'compile') |
|
|
|
if torch.cuda.is_available(): |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.benchmark = True |
|
_logger = logging.getLogger('validate') |
|
|
|
|
|
parser = argparse.ArgumentParser(description='PyTorch Benchmark') |
|
|
|
|
|
parser.add_argument('--model-list', metavar='NAME', default='', |
|
help='txt file based list of model names to benchmark') |
|
parser.add_argument('--bench', default='both', type=str, |
|
help="Benchmark mode. One of 'inference', 'train', 'both'. Defaults to 'both'") |
|
parser.add_argument('--detail', action='store_true', default=False, |
|
help='Provide train fwd/bwd/opt breakdown detail if True. Defaults to False') |
|
parser.add_argument('--no-retry', action='store_true', default=False, |
|
help='Do not decay batch size and retry on error.') |
|
parser.add_argument('--results-file', default='', type=str, |
|
help='Output csv file for validation results (summary)') |
|
parser.add_argument('--results-format', default='csv', type=str, |
|
help='Format for results file one of (csv, json) (default: csv).') |
|
parser.add_argument('--num-warm-iter', default=10, type=int, |
|
help='Number of warmup iterations (default: 10)') |
|
parser.add_argument('--num-bench-iter', default=40, type=int, |
|
help='Number of benchmark iterations (default: 40)') |
|
parser.add_argument('--device', default='cuda', type=str, |
|
help="device to run benchmark on") |
|
|
|
|
|
parser.add_argument('--model', '-m', metavar='NAME', default='resnet50', |
|
help='model architecture (default: resnet50)') |
|
parser.add_argument('-b', '--batch-size', default=256, type=int, |
|
metavar='N', help='mini-batch size (default: 256)') |
|
parser.add_argument('--img-size', default=None, type=int, |
|
metavar='N', help='Input image dimension, uses model default if empty') |
|
parser.add_argument('--input-size', default=None, nargs=3, type=int, |
|
metavar='N N N', help='Input all image dimensions (d h w, e.g. --input-size 3 224 224), uses model default if empty') |
|
parser.add_argument('--use-train-size', action='store_true', default=False, |
|
help='Run inference at train size, not test-input-size if it exists.') |
|
parser.add_argument('--num-classes', type=int, default=None, |
|
help='Number classes in dataset') |
|
parser.add_argument('--gp', default=None, type=str, metavar='POOL', |
|
help='Global pool type, one of (fast, avg, max, avgmax, avgmaxc). Model default if None.') |
|
parser.add_argument('--channels-last', action='store_true', default=False, |
|
help='Use channels_last memory layout') |
|
parser.add_argument('--grad-checkpointing', action='store_true', default=False, |
|
help='Enable gradient checkpointing through model blocks/stages') |
|
parser.add_argument('--amp', action='store_true', default=False, |
|
help='use PyTorch Native AMP for mixed precision training. Overrides --precision arg.') |
|
parser.add_argument('--amp-dtype', default='float16', type=str, |
|
help='lower precision AMP dtype (default: float16). Overrides --precision arg if args.amp True.') |
|
parser.add_argument('--precision', default='float32', type=str, |
|
help='Numeric precision. One of (amp, float32, float16, bfloat16, tf32)') |
|
parser.add_argument('--fuser', default='', type=str, |
|
help="Select jit fuser. One of ('', 'te', 'old', 'nvfuser')") |
|
parser.add_argument('--fast-norm', default=False, action='store_true', |
|
help='enable experimental fast-norm') |
|
parser.add_argument('--reparam', default=False, action='store_true', |
|
help='Reparameterize model') |
|
parser.add_argument('--model-kwargs', nargs='*', default={}, action=ParseKwargs) |
|
parser.add_argument('--torchcompile-mode', type=str, default=None, |
|
help="torch.compile mode (default: None).") |
|
|
|
|
|
scripting_group = parser.add_mutually_exclusive_group() |
|
scripting_group.add_argument('--torchscript', dest='torchscript', action='store_true', |
|
help='convert model torchscript for inference') |
|
scripting_group.add_argument('--torchcompile', nargs='?', type=str, default=None, const='inductor', |
|
help="Enable compilation w/ specified backend (default: inductor).") |
|
scripting_group.add_argument('--aot-autograd', default=False, action='store_true', |
|
help="Enable AOT Autograd optimization.") |
|
|
|
|
|
parser.add_argument('--opt', default='sgd', type=str, metavar='OPTIMIZER', |
|
help='Optimizer (default: "sgd"') |
|
parser.add_argument('--opt-eps', default=None, type=float, metavar='EPSILON', |
|
help='Optimizer Epsilon (default: None, use opt default)') |
|
parser.add_argument('--opt-betas', default=None, type=float, nargs='+', metavar='BETA', |
|
help='Optimizer Betas (default: None, use opt default)') |
|
parser.add_argument('--momentum', type=float, default=0.9, metavar='M', |
|
help='Optimizer momentum (default: 0.9)') |
|
parser.add_argument('--weight-decay', type=float, default=0.0001, |
|
help='weight decay (default: 0.0001)') |
|
parser.add_argument('--clip-grad', type=float, default=None, metavar='NORM', |
|
help='Clip gradient norm (default: None, no clipping)') |
|
parser.add_argument('--clip-mode', type=str, default='norm', |
|
help='Gradient clipping mode. One of ("norm", "value", "agc")') |
|
|
|
|
|
|
|
parser.add_argument('--smoothing', type=float, default=0.1, |
|
help='Label smoothing (default: 0.1)') |
|
parser.add_argument('--drop', type=float, default=0.0, metavar='PCT', |
|
help='Dropout rate (default: 0.)') |
|
parser.add_argument('--drop-path', type=float, default=None, metavar='PCT', |
|
help='Drop path rate (default: None)') |
|
parser.add_argument('--drop-block', type=float, default=None, metavar='PCT', |
|
help='Drop block rate (default: None)') |
|
|
|
|
|
def timestamp(sync=False): |
|
return time.perf_counter() |
|
|
|
|
|
def cuda_timestamp(sync=False, device=None): |
|
if sync: |
|
torch.cuda.synchronize(device=device) |
|
return time.perf_counter() |
|
|
|
|
|
def count_params(model: nn.Module): |
|
return sum([m.numel() for m in model.parameters()]) |
|
|
|
|
|
def resolve_precision(precision: str): |
|
assert precision in ('amp', 'amp_bfloat16', 'float16', 'bfloat16', 'float32') |
|
amp_dtype = None |
|
model_dtype = torch.float32 |
|
data_dtype = torch.float32 |
|
if precision == 'amp': |
|
amp_dtype = torch.float16 |
|
elif precision == 'amp_bfloat16': |
|
amp_dtype = torch.bfloat16 |
|
elif precision == 'float16': |
|
model_dtype = torch.float16 |
|
data_dtype = torch.float16 |
|
elif precision == 'bfloat16': |
|
model_dtype = torch.bfloat16 |
|
data_dtype = torch.bfloat16 |
|
return amp_dtype, model_dtype, data_dtype |
|
|
|
|
|
def profile_deepspeed(model, input_size=(3, 224, 224), batch_size=1, detailed=False): |
|
_, macs, _ = get_model_profile( |
|
model=model, |
|
input_shape=(batch_size,) + input_size, |
|
print_profile=detailed, |
|
detailed=detailed, |
|
warm_up=10, |
|
as_string=False, |
|
output_file=None, |
|
ignore_modules=None) |
|
return macs, 0 |
|
|
|
|
|
def profile_fvcore(model, input_size=(3, 224, 224), batch_size=1, detailed=False, force_cpu=False): |
|
if force_cpu: |
|
model = model.to('cpu') |
|
device, dtype = next(model.parameters()).device, next(model.parameters()).dtype |
|
example_input = torch.ones((batch_size,) + input_size, device=device, dtype=dtype) |
|
fca = FlopCountAnalysis(model, example_input) |
|
aca = ActivationCountAnalysis(model, example_input) |
|
if detailed: |
|
fcs = flop_count_str(fca) |
|
print(fcs) |
|
return fca.total(), aca.total() |
|
|
|
|
|
class BenchmarkRunner: |
|
def __init__( |
|
self, |
|
model_name, |
|
detail=False, |
|
device='cuda', |
|
torchscript=False, |
|
torchcompile=None, |
|
torchcompile_mode=None, |
|
aot_autograd=False, |
|
reparam=False, |
|
precision='float32', |
|
fuser='', |
|
num_warm_iter=10, |
|
num_bench_iter=50, |
|
use_train_size=False, |
|
**kwargs |
|
): |
|
self.model_name = model_name |
|
self.detail = detail |
|
self.device = device |
|
self.amp_dtype, self.model_dtype, self.data_dtype = resolve_precision(precision) |
|
self.channels_last = kwargs.pop('channels_last', False) |
|
if self.amp_dtype is not None: |
|
self.amp_autocast = partial(torch.amp.autocast, device_type=device, dtype=self.amp_dtype) |
|
else: |
|
self.amp_autocast = suppress |
|
|
|
if fuser: |
|
set_jit_fuser(fuser) |
|
self.model = create_model( |
|
model_name, |
|
num_classes=kwargs.pop('num_classes', None), |
|
in_chans=3, |
|
global_pool=kwargs.pop('gp', 'fast'), |
|
scriptable=torchscript, |
|
drop_rate=kwargs.pop('drop', 0.), |
|
drop_path_rate=kwargs.pop('drop_path', None), |
|
drop_block_rate=kwargs.pop('drop_block', None), |
|
**kwargs.pop('model_kwargs', {}), |
|
) |
|
if reparam: |
|
self.model = reparameterize_model(self.model) |
|
self.model.to( |
|
device=self.device, |
|
dtype=self.model_dtype, |
|
memory_format=torch.channels_last if self.channels_last else None, |
|
) |
|
self.num_classes = self.model.num_classes |
|
self.param_count = count_params(self.model) |
|
_logger.info('Model %s created, param count: %d' % (model_name, self.param_count)) |
|
|
|
data_config = resolve_data_config(kwargs, model=self.model, use_test_size=not use_train_size) |
|
self.input_size = data_config['input_size'] |
|
self.batch_size = kwargs.pop('batch_size', 256) |
|
|
|
self.compiled = False |
|
if torchscript: |
|
self.model = torch.jit.script(self.model) |
|
self.compiled = True |
|
elif torchcompile: |
|
assert has_compile, 'A version of torch w/ torch.compile() is required, possibly a nightly.' |
|
torch._dynamo.reset() |
|
self.model = torch.compile(self.model, backend=torchcompile, mode=torchcompile_mode) |
|
self.compiled = True |
|
elif aot_autograd: |
|
assert has_functorch, "functorch is needed for --aot-autograd" |
|
self.model = memory_efficient_fusion(self.model) |
|
self.compiled = True |
|
|
|
self.example_inputs = None |
|
self.num_warm_iter = num_warm_iter |
|
self.num_bench_iter = num_bench_iter |
|
self.log_freq = num_bench_iter // 5 |
|
if 'cuda' in self.device: |
|
self.time_fn = partial(cuda_timestamp, device=self.device) |
|
else: |
|
self.time_fn = timestamp |
|
|
|
def _init_input(self): |
|
self.example_inputs = torch.randn( |
|
(self.batch_size,) + self.input_size, device=self.device, dtype=self.data_dtype) |
|
if self.channels_last: |
|
self.example_inputs = self.example_inputs.contiguous(memory_format=torch.channels_last) |
|
|
|
|
|
class InferenceBenchmarkRunner(BenchmarkRunner): |
|
|
|
def __init__( |
|
self, |
|
model_name, |
|
device='cuda', |
|
torchscript=False, |
|
**kwargs |
|
): |
|
super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs) |
|
self.model.eval() |
|
|
|
def run(self): |
|
def _step(): |
|
t_step_start = self.time_fn() |
|
with self.amp_autocast(): |
|
output = self.model(self.example_inputs) |
|
t_step_end = self.time_fn(True) |
|
return t_step_end - t_step_start |
|
|
|
_logger.info( |
|
f'Running inference benchmark on {self.model_name} for {self.num_bench_iter} steps w/ ' |
|
f'input size {self.input_size} and batch size {self.batch_size}.') |
|
|
|
with torch.no_grad(): |
|
self._init_input() |
|
|
|
for _ in range(self.num_warm_iter): |
|
_step() |
|
|
|
total_step = 0. |
|
num_samples = 0 |
|
t_run_start = self.time_fn() |
|
for i in range(self.num_bench_iter): |
|
delta_fwd = _step() |
|
total_step += delta_fwd |
|
num_samples += self.batch_size |
|
num_steps = i + 1 |
|
if num_steps % self.log_freq == 0: |
|
_logger.info( |
|
f"Infer [{num_steps}/{self.num_bench_iter}]." |
|
f" {num_samples / total_step:0.2f} samples/sec." |
|
f" {1000 * total_step / num_steps:0.3f} ms/step.") |
|
t_run_end = self.time_fn(True) |
|
t_run_elapsed = t_run_end - t_run_start |
|
|
|
results = dict( |
|
samples_per_sec=round(num_samples / t_run_elapsed, 2), |
|
step_time=round(1000 * total_step / self.num_bench_iter, 3), |
|
batch_size=self.batch_size, |
|
img_size=self.input_size[-1], |
|
param_count=round(self.param_count / 1e6, 2), |
|
) |
|
|
|
retries = 0 if self.compiled else 2 |
|
while retries: |
|
retries -= 1 |
|
try: |
|
if has_deepspeed_profiling: |
|
macs, _ = profile_deepspeed(self.model, self.input_size) |
|
results['gmacs'] = round(macs / 1e9, 2) |
|
elif has_fvcore_profiling: |
|
macs, activations = profile_fvcore(self.model, self.input_size, force_cpu=not retries) |
|
results['gmacs'] = round(macs / 1e9, 2) |
|
results['macts'] = round(activations / 1e6, 2) |
|
except RuntimeError as e: |
|
pass |
|
|
|
_logger.info( |
|
f"Inference benchmark of {self.model_name} done. " |
|
f"{results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/step") |
|
|
|
return results |
|
|
|
|
|
class TrainBenchmarkRunner(BenchmarkRunner): |
|
|
|
def __init__( |
|
self, |
|
model_name, |
|
device='cuda', |
|
torchscript=False, |
|
**kwargs |
|
): |
|
super().__init__(model_name=model_name, device=device, torchscript=torchscript, **kwargs) |
|
self.model.train() |
|
|
|
self.loss = nn.CrossEntropyLoss().to(self.device) |
|
self.target_shape = tuple() |
|
|
|
self.optimizer = create_optimizer_v2( |
|
self.model, |
|
opt=kwargs.pop('opt', 'sgd'), |
|
lr=kwargs.pop('lr', 1e-4)) |
|
|
|
if kwargs.pop('grad_checkpointing', False): |
|
self.model.set_grad_checkpointing() |
|
|
|
def _gen_target(self, batch_size): |
|
return torch.empty( |
|
(batch_size,) + self.target_shape, device=self.device, dtype=torch.long).random_(self.num_classes) |
|
|
|
def run(self): |
|
def _step(detail=False): |
|
self.optimizer.zero_grad() |
|
t_start = self.time_fn() |
|
t_fwd_end = t_start |
|
t_bwd_end = t_start |
|
with self.amp_autocast(): |
|
output = self.model(self.example_inputs) |
|
if isinstance(output, tuple): |
|
output = output[0] |
|
if detail: |
|
t_fwd_end = self.time_fn(True) |
|
target = self._gen_target(output.shape[0]) |
|
self.loss(output, target).backward() |
|
if detail: |
|
t_bwd_end = self.time_fn(True) |
|
self.optimizer.step() |
|
t_end = self.time_fn(True) |
|
if detail: |
|
delta_fwd = t_fwd_end - t_start |
|
delta_bwd = t_bwd_end - t_fwd_end |
|
delta_opt = t_end - t_bwd_end |
|
return delta_fwd, delta_bwd, delta_opt |
|
else: |
|
delta_step = t_end - t_start |
|
return delta_step |
|
|
|
_logger.info( |
|
f'Running train benchmark on {self.model_name} for {self.num_bench_iter} steps w/ ' |
|
f'input size {self.input_size} and batch size {self.batch_size}.') |
|
|
|
self._init_input() |
|
|
|
for _ in range(self.num_warm_iter): |
|
_step() |
|
|
|
t_run_start = self.time_fn() |
|
if self.detail: |
|
total_fwd = 0. |
|
total_bwd = 0. |
|
total_opt = 0. |
|
num_samples = 0 |
|
for i in range(self.num_bench_iter): |
|
delta_fwd, delta_bwd, delta_opt = _step(True) |
|
num_samples += self.batch_size |
|
total_fwd += delta_fwd |
|
total_bwd += delta_bwd |
|
total_opt += delta_opt |
|
num_steps = (i + 1) |
|
if num_steps % self.log_freq == 0: |
|
total_step = total_fwd + total_bwd + total_opt |
|
_logger.info( |
|
f"Train [{num_steps}/{self.num_bench_iter}]." |
|
f" {num_samples / total_step:0.2f} samples/sec." |
|
f" {1000 * total_fwd / num_steps:0.3f} ms/step fwd," |
|
f" {1000 * total_bwd / num_steps:0.3f} ms/step bwd," |
|
f" {1000 * total_opt / num_steps:0.3f} ms/step opt." |
|
) |
|
total_step = total_fwd + total_bwd + total_opt |
|
t_run_elapsed = self.time_fn() - t_run_start |
|
results = dict( |
|
samples_per_sec=round(num_samples / t_run_elapsed, 2), |
|
step_time=round(1000 * total_step / self.num_bench_iter, 3), |
|
fwd_time=round(1000 * total_fwd / self.num_bench_iter, 3), |
|
bwd_time=round(1000 * total_bwd / self.num_bench_iter, 3), |
|
opt_time=round(1000 * total_opt / self.num_bench_iter, 3), |
|
batch_size=self.batch_size, |
|
img_size=self.input_size[-1], |
|
param_count=round(self.param_count / 1e6, 2), |
|
) |
|
else: |
|
total_step = 0. |
|
num_samples = 0 |
|
for i in range(self.num_bench_iter): |
|
delta_step = _step(False) |
|
num_samples += self.batch_size |
|
total_step += delta_step |
|
num_steps = (i + 1) |
|
if num_steps % self.log_freq == 0: |
|
_logger.info( |
|
f"Train [{num_steps}/{self.num_bench_iter}]." |
|
f" {num_samples / total_step:0.2f} samples/sec." |
|
f" {1000 * total_step / num_steps:0.3f} ms/step.") |
|
t_run_elapsed = self.time_fn() - t_run_start |
|
results = dict( |
|
samples_per_sec=round(num_samples / t_run_elapsed, 2), |
|
step_time=round(1000 * total_step / self.num_bench_iter, 3), |
|
batch_size=self.batch_size, |
|
img_size=self.input_size[-1], |
|
param_count=round(self.param_count / 1e6, 2), |
|
) |
|
|
|
_logger.info( |
|
f"Train benchmark of {self.model_name} done. " |
|
f"{results['samples_per_sec']:.2f} samples/sec, {results['step_time']:.2f} ms/sample") |
|
|
|
return results |
|
|
|
|
|
class ProfileRunner(BenchmarkRunner): |
|
|
|
def __init__(self, model_name, device='cuda', profiler='', **kwargs): |
|
super().__init__(model_name=model_name, device=device, **kwargs) |
|
if not profiler: |
|
if has_deepspeed_profiling: |
|
profiler = 'deepspeed' |
|
elif has_fvcore_profiling: |
|
profiler = 'fvcore' |
|
assert profiler, "One of deepspeed or fvcore needs to be installed for profiling to work." |
|
self.profiler = profiler |
|
self.model.eval() |
|
|
|
def run(self): |
|
_logger.info( |
|
f'Running profiler on {self.model_name} w/ ' |
|
f'input size {self.input_size} and batch size {self.batch_size}.') |
|
|
|
macs = 0 |
|
activations = 0 |
|
if self.profiler == 'deepspeed': |
|
macs, _ = profile_deepspeed(self.model, self.input_size, batch_size=self.batch_size, detailed=True) |
|
elif self.profiler == 'fvcore': |
|
macs, activations = profile_fvcore(self.model, self.input_size, batch_size=self.batch_size, detailed=True) |
|
|
|
results = dict( |
|
gmacs=round(macs / 1e9, 2), |
|
macts=round(activations / 1e6, 2), |
|
batch_size=self.batch_size, |
|
img_size=self.input_size[-1], |
|
param_count=round(self.param_count / 1e6, 2), |
|
) |
|
|
|
_logger.info( |
|
f"Profile of {self.model_name} done. " |
|
f"{results['gmacs']:.2f} GMACs, {results['param_count']:.2f} M params.") |
|
|
|
return results |
|
|
|
|
|
def _try_run( |
|
model_name, |
|
bench_fn, |
|
bench_kwargs, |
|
initial_batch_size, |
|
no_batch_size_retry=False |
|
): |
|
batch_size = initial_batch_size |
|
results = dict() |
|
error_str = 'Unknown' |
|
while batch_size: |
|
try: |
|
torch.cuda.empty_cache() |
|
bench = bench_fn(model_name=model_name, batch_size=batch_size, **bench_kwargs) |
|
results = bench.run() |
|
return results |
|
except RuntimeError as e: |
|
error_str = str(e) |
|
_logger.error(f'"{error_str}" while running benchmark.') |
|
if not check_batch_size_retry(error_str): |
|
_logger.error(f'Unrecoverable error encountered while benchmarking {model_name}, skipping.') |
|
break |
|
if no_batch_size_retry: |
|
break |
|
batch_size = decay_batch_step(batch_size) |
|
_logger.warning(f'Reducing batch size to {batch_size} for retry.') |
|
results['error'] = error_str |
|
return results |
|
|
|
|
|
def benchmark(args): |
|
if args.amp: |
|
_logger.warning("Overriding precision to 'amp' since --amp flag set.") |
|
args.precision = 'amp' if args.amp_dtype == 'float16' else '_'.join(['amp', args.amp_dtype]) |
|
_logger.info(f'Benchmarking in {args.precision} precision. ' |
|
f'{"NHWC" if args.channels_last else "NCHW"} layout. ' |
|
f'torchscript {"enabled" if args.torchscript else "disabled"}') |
|
|
|
bench_kwargs = vars(args).copy() |
|
bench_kwargs.pop('amp') |
|
model = bench_kwargs.pop('model') |
|
batch_size = bench_kwargs.pop('batch_size') |
|
|
|
bench_fns = (InferenceBenchmarkRunner,) |
|
prefixes = ('infer',) |
|
if args.bench == 'both': |
|
bench_fns = ( |
|
InferenceBenchmarkRunner, |
|
TrainBenchmarkRunner |
|
) |
|
prefixes = ('infer', 'train') |
|
elif args.bench == 'train': |
|
bench_fns = TrainBenchmarkRunner, |
|
prefixes = 'train', |
|
elif args.bench.startswith('profile'): |
|
|
|
if 'deepspeed' in args.bench: |
|
assert has_deepspeed_profiling, "deepspeed must be installed to use deepspeed flop counter" |
|
bench_kwargs['profiler'] = 'deepspeed' |
|
elif 'fvcore' in args.bench: |
|
assert has_fvcore_profiling, "fvcore must be installed to use fvcore flop counter" |
|
bench_kwargs['profiler'] = 'fvcore' |
|
bench_fns = ProfileRunner, |
|
batch_size = 1 |
|
|
|
model_results = OrderedDict(model=model) |
|
for prefix, bench_fn in zip(prefixes, bench_fns): |
|
run_results = _try_run( |
|
model, |
|
bench_fn, |
|
bench_kwargs=bench_kwargs, |
|
initial_batch_size=batch_size, |
|
no_batch_size_retry=args.no_retry, |
|
) |
|
if prefix and 'error' not in run_results: |
|
run_results = {'_'.join([prefix, k]): v for k, v in run_results.items()} |
|
model_results.update(run_results) |
|
if 'error' in run_results: |
|
break |
|
if 'error' not in model_results: |
|
param_count = model_results.pop('infer_param_count', model_results.pop('train_param_count', 0)) |
|
model_results.setdefault('param_count', param_count) |
|
model_results.pop('train_param_count', 0) |
|
return model_results |
|
|
|
|
|
def main(): |
|
setup_default_logging() |
|
args = parser.parse_args() |
|
model_cfgs = [] |
|
model_names = [] |
|
|
|
if args.fast_norm: |
|
set_fast_norm() |
|
|
|
if args.model_list: |
|
args.model = '' |
|
with open(args.model_list) as f: |
|
model_names = [line.rstrip() for line in f] |
|
model_cfgs = [(n, None) for n in model_names] |
|
elif args.model == 'all': |
|
|
|
args.pretrained = True |
|
model_names = list_models(pretrained=True, exclude_filters=['*in21k']) |
|
model_cfgs = [(n, None) for n in model_names] |
|
elif not is_model(args.model): |
|
|
|
model_names = list_models(args.model) |
|
model_cfgs = [(n, None) for n in model_names] |
|
|
|
if len(model_cfgs): |
|
_logger.info('Running bulk validation on these pretrained models: {}'.format(', '.join(model_names))) |
|
results = [] |
|
try: |
|
for m, _ in model_cfgs: |
|
if not m: |
|
continue |
|
args.model = m |
|
r = benchmark(args) |
|
if r: |
|
results.append(r) |
|
time.sleep(10) |
|
except KeyboardInterrupt as e: |
|
pass |
|
sort_key = 'infer_samples_per_sec' |
|
if 'train' in args.bench: |
|
sort_key = 'train_samples_per_sec' |
|
elif 'profile' in args.bench: |
|
sort_key = 'infer_gmacs' |
|
results = filter(lambda x: sort_key in x, results) |
|
results = sorted(results, key=lambda x: x[sort_key], reverse=True) |
|
else: |
|
results = benchmark(args) |
|
|
|
if args.results_file: |
|
write_results(args.results_file, results, format=args.results_format) |
|
|
|
|
|
print(f'--result\n{json.dumps(results, indent=4)}') |
|
|
|
|
|
def write_results(results_file, results, format='csv'): |
|
with open(results_file, mode='w') as cf: |
|
if format == 'json': |
|
json.dump(results, cf, indent=4) |
|
else: |
|
if not isinstance(results, (list, tuple)): |
|
results = [results] |
|
if not results: |
|
return |
|
dw = csv.DictWriter(cf, fieldnames=results[0].keys()) |
|
dw.writeheader() |
|
for r in results: |
|
dw.writerow(r) |
|
cf.flush() |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|