danilotpnta
commited on
Commit
•
2684475
1
Parent(s):
393830f
update
Browse files- .gitignore +1 -0
- GTZAN_genre_classification.py +114 -0
- metadata.csv +0 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
data/.DS_Store
|
GTZAN_genre_classification.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import csv
|
3 |
+
import datasets
|
4 |
+
|
5 |
+
logger = datasets.logging.get_logger(__name__)
|
6 |
+
|
7 |
+
_CITATION = """\
|
8 |
+
@misc{gtzan2023,
|
9 |
+
title={GTZAN Music Genre Classification Dataset},
|
10 |
+
author={Your Name},
|
11 |
+
year={2023},
|
12 |
+
url={https://example.com},
|
13 |
+
}
|
14 |
+
"""
|
15 |
+
|
16 |
+
_DESCRIPTION = """\
|
17 |
+
The GTZAN dataset is a music genre classification dataset.
|
18 |
+
It consists of 10 genres, each represented by 100 tracks.
|
19 |
+
"""
|
20 |
+
|
21 |
+
_HOMEPAGE_URL = "https://example.com"
|
22 |
+
_DATA_URL = "data/gtzan.zip"
|
23 |
+
|
24 |
+
class GTZANConfig(datasets.BuilderConfig):
|
25 |
+
"""BuilderConfig for GTZAN"""
|
26 |
+
|
27 |
+
def __init__(self, **kwargs):
|
28 |
+
super(GTZANConfig, self).__init__(**kwargs)
|
29 |
+
|
30 |
+
|
31 |
+
class GTZAN(datasets.GeneratorBasedBuilder):
|
32 |
+
BUILDER_CONFIGS = [
|
33 |
+
GTZANConfig(name="gtzan", version=datasets.Version("1.0.0"), description="GTZAN Music Genre Classification Dataset")
|
34 |
+
]
|
35 |
+
|
36 |
+
def _info(self):
|
37 |
+
return datasets.DatasetInfo(
|
38 |
+
description=_DESCRIPTION,
|
39 |
+
features=datasets.Features(
|
40 |
+
{
|
41 |
+
"id": datasets.Value("int32"),
|
42 |
+
"genre": datasets.Value("string"),
|
43 |
+
"title": datasets.Value("string"),
|
44 |
+
"artist": datasets.Value("string"),
|
45 |
+
"tempo": datasets.Value("float"),
|
46 |
+
"keys": datasets.Value("string"),
|
47 |
+
"loudness": datasets.Value("float"),
|
48 |
+
"embeddings": datasets.Value("string"),
|
49 |
+
"sorted_pred_genres": datasets.Value("string"),
|
50 |
+
"x_tsne": datasets.Value("float"),
|
51 |
+
"y_tsne": datasets.Value("float"),
|
52 |
+
"z_tsne": datasets.Value("float"),
|
53 |
+
"x_umap": datasets.Value("float"),
|
54 |
+
"y_umap": datasets.Value("float"),
|
55 |
+
"z_umap": datasets.Value("float"),
|
56 |
+
"album_cover_path": datasets.Value("string"),
|
57 |
+
"key": datasets.Value("string"),
|
58 |
+
"filepath": datasets.Value("string"),
|
59 |
+
"audio": datasets.Audio(sampling_rate=44100),
|
60 |
+
}
|
61 |
+
),
|
62 |
+
supervised_keys=("audio", "genre"),
|
63 |
+
homepage=_HOMEPAGE_URL,
|
64 |
+
citation=_CITATION,
|
65 |
+
)
|
66 |
+
|
67 |
+
def _split_generators(self, dl_manager):
|
68 |
+
archive_path = dl_manager.download_and_extract(_DATA_URL)
|
69 |
+
data_dir = os.path.join(archive_path, "gtzan")
|
70 |
+
|
71 |
+
# Debugging the paths
|
72 |
+
logger.info(f"Archive path: {archive_path}")
|
73 |
+
logger.info(f"Data directory: {data_dir}")
|
74 |
+
|
75 |
+
return [
|
76 |
+
datasets.SplitGenerator(
|
77 |
+
name=datasets.Split.TRAIN,
|
78 |
+
gen_kwargs={
|
79 |
+
"metadata_file": os.path.join(data_dir, "metadata.csv"),
|
80 |
+
"data_dir": data_dir,
|
81 |
+
},
|
82 |
+
),
|
83 |
+
]
|
84 |
+
|
85 |
+
def _generate_examples(self, metadata_file, data_dir):
|
86 |
+
with open(metadata_file, "r", encoding="utf-8") as f:
|
87 |
+
reader = csv.DictReader(f)
|
88 |
+
for id_, row in enumerate(reader):
|
89 |
+
file_path = os.path.join(data_dir, row["filepath"])
|
90 |
+
|
91 |
+
# Debugging the file paths
|
92 |
+
logger.info(f"Processing file: {file_path}")
|
93 |
+
|
94 |
+
yield id_, {
|
95 |
+
"id": int(row["id"]),
|
96 |
+
"genre": row["genre"],
|
97 |
+
"title": row["title"],
|
98 |
+
"artist": row["artist"],
|
99 |
+
"tempo": float(row["tempo"]),
|
100 |
+
"keys": row["keys"],
|
101 |
+
"loudness": float(row["loudness"]),
|
102 |
+
"embeddings": row["embeddings"],
|
103 |
+
"sorted_pred_genres": row["sorted_pred_genres"],
|
104 |
+
"x_tsne": float(row["x_tsne"]),
|
105 |
+
"y_tsne": float(row["y_tsne"]),
|
106 |
+
"z_tsne": float(row["z_tsne"]),
|
107 |
+
"x_umap": float(row["x_umap"]),
|
108 |
+
"y_umap": float(row["y_umap"]),
|
109 |
+
"z_umap": float(row["z_umap"]),
|
110 |
+
"album_cover_path": os.path.join(data_dir, row["album_cover_path"]),
|
111 |
+
"key": row["key"],
|
112 |
+
"filepath": file_path,
|
113 |
+
"audio": file_path,
|
114 |
+
}
|
metadata.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|