d0rj commited on
Commit
5055e8e
1 Parent(s): c4acc0f

docs: update README

Browse files
Files changed (1) hide show
  1. README.md +99 -2
README.md CHANGED
@@ -1,4 +1,27 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: id
@@ -21,7 +44,81 @@ dataset_info:
21
  num_examples: 1500
22
  download_size: 10144708
23
  dataset_size: 22143849
 
 
 
 
 
 
 
 
 
24
  ---
25
- # Dataset Card for "dialogsum-ru"
 
 
 
 
 
26
 
27
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - translated
6
+ language:
7
+ - ru
8
+ license:
9
+ - mit
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - knkarthick/dialogsum
16
+ task_categories:
17
+ - summarization
18
+ - text2text-generation
19
+ - text-generation
20
+ task_ids: []
21
+ pretty_name: DIALOGSum Corpus (ru)
22
+ tags:
23
+ - conversations-summarization
24
+ - dialogue-summarization
25
  dataset_info:
26
  features:
27
  - name: id
 
44
  num_examples: 1500
45
  download_size: 10144708
46
  dataset_size: 22143849
47
+ train-eval-index:
48
+ - config: samsum
49
+ task: summarization
50
+ task_id: summarization
51
+ splits:
52
+ eval_split: test
53
+ col_mapping:
54
+ dialogue: text
55
+ summary: target
56
  ---
57
+ # Dataset Card for DIALOGSum Corpus
58
+ ## Dataset Description
59
+ ### Links
60
+ - **Homepage:** https://aclanthology.org/2021.findings-acl.449
61
+ - **Repository:** https://github.com/cylnlp/dialogsum
62
+ - **Paper:** https://aclanthology.org/2021.findings-acl.449
63
 
64
+ ### Dataset Summary
65
+ DialogSum is a large-scale dialogue summarization dataset, consisting of 13,460 (Plus 100 holdout data for topic generation) dialogues with corresponding manually labeled summaries and topics.
66
+ ### Languages
67
+ Russian (translated from English by Google Translate).
68
+
69
+ ## Dataset Structure
70
+ ### Data Fields
71
+ - dialogue: text of dialogue.
72
+ - summary: human written summary of the dialogue.
73
+ - topic: human written topic/one liner of the dialogue.
74
+ - id: unique file id of an example.
75
+
76
+ ### Data Splits
77
+ - train: 12460
78
+ - val: 500
79
+ - test: 1500
80
+ - holdout: 100 [Only 3 features: id, dialogue, topic]
81
+
82
+ ## Dataset Creation
83
+ ### Curation Rationale
84
+ In paper:
85
+ We collect dialogue data for DialogSum from three public dialogue corpora, namely Dailydialog (Li et al., 2017), DREAM (Sun et al., 2019) and MuTual (Cui et al., 2019), as well as an English speaking practice website. These datasets contain face-to-face spoken dialogues that cover a wide range of daily-life topics, including schooling, work, medication, shopping, leisure, travel. Most conversations take place between friends, colleagues, and between service providers and customers.
86
+
87
+ Compared with previous datasets, dialogues from DialogSum have distinct characteristics:
88
+
89
+ Under rich real-life scenarios, including more diverse task-oriented scenarios;
90
+ Have clear communication patterns and intents, which is valuable to serve as summarization sources;
91
+ Have a reasonable length, which comforts the purpose of automatic summarization.
92
+
93
+ We ask annotators to summarize each dialogue based on the following criteria:
94
+ Convey the most salient information;
95
+ Be brief;
96
+ Preserve important named entities within the conversation;
97
+ Be written from an observer perspective;
98
+ Be written in formal language.
99
+ ### Who are the source language producers?
100
+ linguists
101
+ ### Who are the annotators?
102
+ language experts
103
+
104
+ ## Licensing Information
105
+ MIT License
106
+ ## Citation Information
107
+ ```
108
+ @inproceedings{chen-etal-2021-dialogsum,
109
+ title = "{D}ialog{S}um: {A} Real-Life Scenario Dialogue Summarization Dataset",
110
+ author = "Chen, Yulong and
111
+ Liu, Yang and
112
+ Chen, Liang and
113
+ Zhang, Yue",
114
+ booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
115
+ month = aug,
116
+ year = "2021",
117
+ address = "Online",
118
+ publisher = "Association for Computational Linguistics",
119
+ url = "https://aclanthology.org/2021.findings-acl.449",
120
+ doi = "10.18653/v1/2021.findings-acl.449",
121
+ pages = "5062--5074",
122
+ ```
123
+ ## Contributions
124
+ Thanks to [@cylnlp](https://github.com/cylnlp) for adding this dataset.