Datasets:

Modalities:
Text
Languages:
Bengali
ArXiv:
Libraries:
Datasets
License:
abhik1505040 commited on
Commit
a1e02ca
1 Parent(s): 2ec4604

Added files

Browse files
Files changed (3) hide show
  1. README.md +190 -0
  2. dataset_infos.json +1 -0
  3. xnli_bn.py +19 -13
README.md CHANGED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - machine-generated
4
+ language_creators:
5
+ - found
6
+ multilinguality:
7
+ - monolingual
8
+ size_categories:
9
+ - 100K<n<1M
10
+ source_datasets:
11
+ - extended
12
+ task_categories:
13
+ - text-classification
14
+ task_ids:
15
+ - natural-language-inference
16
+ languages:
17
+ - bn
18
+ licenses:
19
+ - cc-by-nc-sa-4.0
20
+ ---
21
+
22
+ # Dataset Card for `xnli_bn`
23
+
24
+ ## Table of Contents
25
+ - [Dataset Card for `xnli_bn`](#dataset-card-for-xnli_bn)
26
+ - [Table of Contents](#table-of-contents)
27
+ - [Dataset Description](#dataset-description)
28
+ - [Dataset Summary](#dataset-summary)
29
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
30
+ - [Languages](#languages)
31
+ - [Usage](#usage)
32
+ - [Dataset Structure](#dataset-structure)
33
+ - [Data Instances](#data-instances)
34
+ - [Data Fields](#data-fields)
35
+ - [Data Splits](#data-splits)
36
+ - [Dataset Creation](#dataset-creation)
37
+ - [Curation Rationale](#curation-rationale)
38
+ - [Source Data](#source-data)
39
+ - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
40
+ - [Who are the source language producers?](#who-are-the-source-language-producers)
41
+ - [Annotations](#annotations)
42
+ - [Annotation process](#annotation-process)
43
+ - [Who are the annotators?](#who-are-the-annotators)
44
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
45
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
46
+ - [Social Impact of Dataset](#social-impact-of-dataset)
47
+ - [Discussion of Biases](#discussion-of-biases)
48
+ - [Other Known Limitations](#other-known-limitations)
49
+ - [Additional Information](#additional-information)
50
+ - [Dataset Curators](#dataset-curators)
51
+ - [Licensing Information](#licensing-information)
52
+ - [Citation Information](#citation-information)
53
+ - [Contributions](#contributions)
54
+
55
+ ## Dataset Description
56
+
57
+ - **Repository:** [https://github.com/csebuetnlp/banglabert](https://github.com/csebuetnlp/banglabert)
58
+ - **Paper:** [**"BanglaBERT: Combating Embedding Barrier in Multilingual Models for Low-Resource Language Understanding"**](https://arxiv.org/abs/2101.00204)
59
+ - **Point of Contact:** [Tahmid Hasan](mailto:tahmidhasan@cse.buet.ac.bd)
60
+
61
+ ### Dataset Summary
62
+
63
+ This is a Natural Language Inference (NLI) dataset for Bengali, curated using the subset of
64
+ MNLI data used in XNLI and state-of-the-art English to Bengali translation model introduced **[here](https://aclanthology.org/2020.emnlp-main.207/).**
65
+
66
+
67
+ ### Supported Tasks and Leaderboards
68
+
69
+ [More information needed](https://github.com/csebuetnlp/banglabert)
70
+
71
+ ### Languages
72
+
73
+ * `Bengali`
74
+
75
+ ### Usage
76
+ ```python
77
+ from datasets import load_dataset
78
+ dataset = load_dataset("csebuetnlp/xnli_bn")
79
+ ```
80
+ ## Dataset Structure
81
+
82
+ ### Data Instances
83
+
84
+ One example from the dataset is given below in JSON format.
85
+ ```
86
+ {
87
+ "sentence1": "আসলে, আমি এমনকি এই বিষয়ে চিন্তাও করিনি, কিন্তু আমি এত হতাশ হয়ে পড়েছিলাম যে, শেষ পর্যন্ত আমি আবার তার সঙ্গে কথা বলতে শুরু করেছিলাম",
88
+ "sentence2": "আমি তার সাথে আবার কথা বলিনি।",
89
+ "label": "contradiction"
90
+ }
91
+ ```
92
+
93
+ ### Data Fields
94
+
95
+ The data fields are as follows:
96
+
97
+ - `sentence1`: a `string` feature indicating the premise.
98
+ - `sentence2`: a `string` feature indicating the hypothesis.
99
+ - `label`: a classification label, where possible values are `entailment`, `neutral`, `contradiction`.
100
+
101
+ ### Data Splits
102
+ | split |count |
103
+ |----------|--------|
104
+ |`train`| 381449 |
105
+ |`validation`| 2419 |
106
+ |`test`| 4895 |
107
+
108
+
109
+
110
+
111
+ ## Dataset Creation
112
+
113
+ The dataset curation procedure was the same as the [XNLI](https://aclanthology.org/D18-1269/) dataset: we translated the [MultiNLI](https://aclanthology.org/N18-1101/) training data using the English to Bangla translation model introduced [here](https://aclanthology.org/2020.emnlp-main.207/). Due to the possibility of incursions of error during automatic translation, we used the [Language-Agnostic BERT Sentence Embeddings (LaBSE)](https://arxiv.org/abs/2007.01852) of the translations and original sentences to compute their similarity. All sentences below a similarity thresholdof 0.70 were discarded.
114
+
115
+ ### Curation Rationale
116
+
117
+ [More information needed](https://github.com/csebuetnlp/banglabert)
118
+
119
+ ### Source Data
120
+
121
+ [XNLI](https://aclanthology.org/D18-1269/)
122
+
123
+ #### Initial Data Collection and Normalization
124
+
125
+ [More information needed](https://github.com/csebuetnlp/banglabert)
126
+
127
+
128
+ #### Who are the source language producers?
129
+
130
+ [More information needed](https://github.com/csebuetnlp/banglabert)
131
+
132
+
133
+ ### Annotations
134
+
135
+ [More information needed](https://github.com/csebuetnlp/banglabert)
136
+
137
+
138
+ #### Annotation process
139
+
140
+ [More information needed](https://github.com/csebuetnlp/banglabert)
141
+
142
+ #### Who are the annotators?
143
+
144
+ [More information needed](https://github.com/csebuetnlp/banglabert)
145
+
146
+ ### Personal and Sensitive Information
147
+
148
+ [More information needed](https://github.com/csebuetnlp/banglabert)
149
+
150
+ ## Considerations for Using the Data
151
+
152
+ ### Social Impact of Dataset
153
+
154
+ [More information needed](https://github.com/csebuetnlp/banglabert)
155
+
156
+ ### Discussion of Biases
157
+
158
+ [More information needed](https://github.com/csebuetnlp/banglabert)
159
+
160
+ ### Other Known Limitations
161
+
162
+ [More information needed](https://github.com/csebuetnlp/banglabert)
163
+
164
+ ## Additional Information
165
+
166
+ ### Dataset Curators
167
+
168
+ [More information needed](https://github.com/csebuetnlp/banglabert)
169
+
170
+ ### Licensing Information
171
+
172
+ Contents of this repository are restricted to only non-commercial research purposes under the [Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/). Copyright of the dataset contents belongs to the original copyright holders.
173
+ ### Citation Information
174
+
175
+ If you use the dataset, please cite the following paper:
176
+ ```
177
+ @misc{bhattacharjee2021banglabert,
178
+ title={BanglaBERT: Combating Embedding Barrier in Multilingual Models for Low-Resource Language Understanding},
179
+ author={Abhik Bhattacharjee and Tahmid Hasan and Kazi Samin and Md Saiful Islam and M. Sohel Rahman and Anindya Iqbal and Rifat Shahriyar},
180
+ year={2021},
181
+ eprint={2101.00204},
182
+ archivePrefix={arXiv},
183
+ primaryClass={cs.CL}
184
+ }
185
+ ```
186
+
187
+
188
+ ### Contributions
189
+
190
+ Thanks to [@abhik1505040](https://github.com/abhik1505040) and [@Tahmid](https://github.com/Tahmid04) for adding this dataset.
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"xnli_bn": {"description": "This is a Natural Language Inference (NLI) dataset for Bengali, curated using the subset of\nMNLI data used in XNLI and state-of-the-art English to Bengali translation model.\n", "citation": "@misc{bhattacharjee2021banglabert,\n title={BanglaBERT: Combating Embedding Barrier in Multilingual Models for Low-Resource Language Understanding},\n author={Abhik Bhattacharjee and Tahmid Hasan and Kazi Samin and Md Saiful Islam and M. Sohel Rahman and Anindya Iqbal and Rifat Shahriyar},\n year={2021},\n eprint={2101.00204},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "https://github.com/csebuetnlp/banglabert", "license": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["contradiction", "entailment", "neutral"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "xnli_bn", "config_name": "xnli_bn", "version": {"version_str": "0.0.1", "description": null, "major": 0, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 175660643, "num_examples": 381449, "dataset_name": "xnli_bn"}, "test": {"name": "test", "num_bytes": 2127035, "num_examples": 4895, "dataset_name": "xnli_bn"}, "validation": {"name": "validation", "num_bytes": 1046988, "num_examples": 2419, "dataset_name": "xnli_bn"}}, "download_checksums": {"https://huggingface.co/datasets/csebuetnlp/xnli_bn/resolve/main/data/xnli_bn.tar.bz2": {"num_bytes": 21437836, "checksum": "a91b4d3f8433a98fd6251396976b17b2385ef49ffbb207fabe8124fc6b066207"}}, "download_size": 21437836, "post_processing_size": null, "dataset_size": 178834666, "size_in_bytes": 200272502}}
xnli_bn.py CHANGED
@@ -1,10 +1,13 @@
1
  """XNLI Bengali dataset"""
2
  import json
3
  import os
 
4
  import datasets
 
 
5
  _CITATION = """\
6
  @misc{bhattacharjee2021banglabert,
7
- title={BanglaBERT: Combating Embedding Barrier in Multilingual Models for Low-Resource Language Understanding},
8
  author={Abhik Bhattacharjee and Tahmid Hasan and Kazi Samin and Md Saiful Islam and M. Sohel Rahman and Anindya Iqbal and Rifat Shahriyar},
9
  year={2021},
10
  eprint={2101.00204},
@@ -13,25 +16,32 @@ _CITATION = """\
13
  }
14
  """
15
  _DESCRIPTION = """\
16
- This is a Natural Language Inference (NLI) dataset for Bengali, curated using the subset of
17
- MNLI data used in XNLI and state-of-the-art English to Bengali translation model.
18
  """
19
  _HOMEPAGE = "https://github.com/csebuetnlp/banglabert"
20
  _LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)"
21
  _URL = "https://huggingface.co/datasets/csebuetnlp/xnli_bn/resolve/main/data/xnli_bn.tar.bz2"
22
  _VERSION = datasets.Version("0.0.1")
23
 
 
24
  class XnliBn(datasets.GeneratorBasedBuilder):
25
  """XNLI Bengali dataset"""
26
 
 
 
 
 
 
 
 
 
27
  def _info(self):
28
  features = datasets.Features(
29
  {
30
  "sentence1": datasets.Value("string"),
31
  "sentence2": datasets.Value("string"),
32
- "label": datasets.features.ClassLabel(
33
- names=["contradiction", "entailment", "neurtral"]
34
- ),
35
  }
36
  )
37
  return datasets.DatasetInfo(
@@ -40,12 +50,12 @@ class XnliBn(datasets.GeneratorBasedBuilder):
40
  homepage=_HOMEPAGE,
41
  license=_LICENSE,
42
  citation=_CITATION,
43
- version=_VERSION
44
  )
45
 
46
  def _split_generators(self, dl_manager):
47
  """Returns SplitGenerators."""
48
- data_dir = dl_manager.download_and_extract(_URL)
49
  return [
50
  datasets.SplitGenerator(
51
  name=datasets.Split.TRAIN,
@@ -72,8 +82,4 @@ class XnliBn(datasets.GeneratorBasedBuilder):
72
  with open(filepath, encoding="utf-8") as f:
73
  for idx_, row in enumerate(f):
74
  data = json.loads(row)
75
- yield idx_, {
76
- "sentence1": data["sentence1"],
77
- "sentence2": data["sentence2"],
78
- "label": data["label"]
79
- }
 
1
  """XNLI Bengali dataset"""
2
  import json
3
  import os
4
+
5
  import datasets
6
+
7
+
8
  _CITATION = """\
9
  @misc{bhattacharjee2021banglabert,
10
+ title={BanglaBERT: Combating Embedding Barrier in Multilingual Models for Low-Resource Language Understanding},
11
  author={Abhik Bhattacharjee and Tahmid Hasan and Kazi Samin and Md Saiful Islam and M. Sohel Rahman and Anindya Iqbal and Rifat Shahriyar},
12
  year={2021},
13
  eprint={2101.00204},
 
16
  }
17
  """
18
  _DESCRIPTION = """\
19
+ This is a Natural Language Inference (NLI) dataset for Bengali, curated using the subset of
20
+ MNLI data used in XNLI and state-of-the-art English to Bengali translation model.
21
  """
22
  _HOMEPAGE = "https://github.com/csebuetnlp/banglabert"
23
  _LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)"
24
  _URL = "https://huggingface.co/datasets/csebuetnlp/xnli_bn/resolve/main/data/xnli_bn.tar.bz2"
25
  _VERSION = datasets.Version("0.0.1")
26
 
27
+
28
  class XnliBn(datasets.GeneratorBasedBuilder):
29
  """XNLI Bengali dataset"""
30
 
31
+ BUILDER_CONFIGS = [
32
+ datasets.BuilderConfig(
33
+ name="xnli_bn",
34
+ version=_VERSION,
35
+ description=_DESCRIPTION,
36
+ )
37
+ ]
38
+
39
  def _info(self):
40
  features = datasets.Features(
41
  {
42
  "sentence1": datasets.Value("string"),
43
  "sentence2": datasets.Value("string"),
44
+ "label": datasets.features.ClassLabel(names=["contradiction", "entailment", "neutral"]),
 
 
45
  }
46
  )
47
  return datasets.DatasetInfo(
 
50
  homepage=_HOMEPAGE,
51
  license=_LICENSE,
52
  citation=_CITATION,
53
+ version=_VERSION,
54
  )
55
 
56
  def _split_generators(self, dl_manager):
57
  """Returns SplitGenerators."""
58
+ data_dir = os.path.join(dl_manager.download_and_extract(_URL), "xnli_bn")
59
  return [
60
  datasets.SplitGenerator(
61
  name=datasets.Split.TRAIN,
 
82
  with open(filepath, encoding="utf-8") as f:
83
  for idx_, row in enumerate(f):
84
  data = json.loads(row)
85
+ yield idx_, {"sentence1": data["sentence1"], "sentence2": data["sentence2"], "label": data["label"]}