Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc
|
3 |
+
---
|
4 |
+
|
5 |
+
# BOXRR-23: Berkeley Open Extended Reality Recording Dataset 2023
|
6 |
+
|
7 |
+
This is a copy of the official Berkeley Open Extended Reality Recording Dataset 2023 (BOXRR-23). Please visit the [project website](https://rdi.berkeley.edu/metaverse/boxrr-23/) for more information.
|
8 |
+
|
9 |
+
In `users/` you find one tarball for each user (which you can untar with `tar xvf <path/to/user.tar>`), which includes all replays of that user. Each replay is stored in a dedicated file in the [XROR](https://github.com/MetaGuard/xror) format.
|
10 |
+
|
11 |
+
## Metadata
|
12 |
+
|
13 |
+
The entire dataset is around 5 TB large, which can be inconvenient and you might want to only download users you are interested in.
|
14 |
+
For this we have collected the metadata from each recording and dumped it into a BSON file which you find in `metadata/`. You can import this as collection into mongodb to quickly select users and replays to compile a list of the specific files you want to download (the field `user_id` matches the filename in `users/`).
|
15 |
+
|
16 |
+
## Notes
|
17 |
+
|
18 |
+
- there are BeatSaber and TiltBrush users, which is noted in the field `info.software.app` in the metadata
|
19 |
+
- BeatSaber uses Unity's coordinate system. For more details (and why these details matter) [have a look at this](https://cschell.github.io/kinematic-maze/)
|
20 |
+
|
21 |
+
## Tools
|
22 |
+
|
23 |
+
- you'll need [XROR](https://github.com/MetaGuard/xror) to open the individual replays
|
24 |
+
- for an example script that imports and converts the motion data, you might find the ["XR Motion Dataset Conversion Scrips"](https://cschell.github.io/kinematic-maze/) useful, which include a conversion script for BOXRR-23 (you need to unpack each user first).
|
25 |
+
- also, there is the [Motion Learning Toolbox](https://github.com/cschell/Motion-Learning-Toolbox) for further preprocessing of motion data
|