|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import ldm_patched.utils.path_utils |
|
import ldm_patched.modules.clip_model |
|
import ldm_patched.modules.clip_vision |
|
import ldm_patched.modules.ops |
|
|
|
|
|
VISION_CONFIG_DICT = { |
|
"hidden_size": 1024, |
|
"image_size": 224, |
|
"intermediate_size": 4096, |
|
"num_attention_heads": 16, |
|
"num_channels": 3, |
|
"num_hidden_layers": 24, |
|
"patch_size": 14, |
|
"projection_dim": 768, |
|
"hidden_act": "quick_gelu", |
|
} |
|
|
|
class MLP(nn.Module): |
|
def __init__(self, in_dim, out_dim, hidden_dim, use_residual=True, operations=ldm_patched.modules.ops): |
|
super().__init__() |
|
if use_residual: |
|
assert in_dim == out_dim |
|
self.layernorm = operations.LayerNorm(in_dim) |
|
self.fc1 = operations.Linear(in_dim, hidden_dim) |
|
self.fc2 = operations.Linear(hidden_dim, out_dim) |
|
self.use_residual = use_residual |
|
self.act_fn = nn.GELU() |
|
|
|
def forward(self, x): |
|
residual = x |
|
x = self.layernorm(x) |
|
x = self.fc1(x) |
|
x = self.act_fn(x) |
|
x = self.fc2(x) |
|
if self.use_residual: |
|
x = x + residual |
|
return x |
|
|
|
|
|
class FuseModule(nn.Module): |
|
def __init__(self, embed_dim, operations): |
|
super().__init__() |
|
self.mlp1 = MLP(embed_dim * 2, embed_dim, embed_dim, use_residual=False, operations=operations) |
|
self.mlp2 = MLP(embed_dim, embed_dim, embed_dim, use_residual=True, operations=operations) |
|
self.layer_norm = operations.LayerNorm(embed_dim) |
|
|
|
def fuse_fn(self, prompt_embeds, id_embeds): |
|
stacked_id_embeds = torch.cat([prompt_embeds, id_embeds], dim=-1) |
|
stacked_id_embeds = self.mlp1(stacked_id_embeds) + prompt_embeds |
|
stacked_id_embeds = self.mlp2(stacked_id_embeds) |
|
stacked_id_embeds = self.layer_norm(stacked_id_embeds) |
|
return stacked_id_embeds |
|
|
|
def forward( |
|
self, |
|
prompt_embeds, |
|
id_embeds, |
|
class_tokens_mask, |
|
) -> torch.Tensor: |
|
|
|
id_embeds = id_embeds.to(prompt_embeds.dtype) |
|
num_inputs = class_tokens_mask.sum().unsqueeze(0) |
|
batch_size, max_num_inputs = id_embeds.shape[:2] |
|
|
|
seq_length = prompt_embeds.shape[1] |
|
|
|
flat_id_embeds = id_embeds.view( |
|
-1, id_embeds.shape[-2], id_embeds.shape[-1] |
|
) |
|
|
|
valid_id_mask = ( |
|
torch.arange(max_num_inputs, device=flat_id_embeds.device)[None, :] |
|
< num_inputs[:, None] |
|
) |
|
valid_id_embeds = flat_id_embeds[valid_id_mask.flatten()] |
|
|
|
prompt_embeds = prompt_embeds.view(-1, prompt_embeds.shape[-1]) |
|
class_tokens_mask = class_tokens_mask.view(-1) |
|
valid_id_embeds = valid_id_embeds.view(-1, valid_id_embeds.shape[-1]) |
|
|
|
image_token_embeds = prompt_embeds[class_tokens_mask] |
|
stacked_id_embeds = self.fuse_fn(image_token_embeds, valid_id_embeds) |
|
assert class_tokens_mask.sum() == stacked_id_embeds.shape[0], f"{class_tokens_mask.sum()} != {stacked_id_embeds.shape[0]}" |
|
prompt_embeds.masked_scatter_(class_tokens_mask[:, None], stacked_id_embeds.to(prompt_embeds.dtype)) |
|
updated_prompt_embeds = prompt_embeds.view(batch_size, seq_length, -1) |
|
return updated_prompt_embeds |
|
|
|
class PhotoMakerIDEncoder(ldm_patched.modules.clip_model.CLIPVisionModelProjection): |
|
def __init__(self): |
|
self.load_device = ldm_patched.modules.model_management.text_encoder_device() |
|
offload_device = ldm_patched.modules.model_management.text_encoder_offload_device() |
|
dtype = ldm_patched.modules.model_management.text_encoder_dtype(self.load_device) |
|
|
|
super().__init__(VISION_CONFIG_DICT, dtype, offload_device, ldm_patched.modules.ops.manual_cast) |
|
self.visual_projection_2 = ldm_patched.modules.ops.manual_cast.Linear(1024, 1280, bias=False) |
|
self.fuse_module = FuseModule(2048, ldm_patched.modules.ops.manual_cast) |
|
|
|
def forward(self, id_pixel_values, prompt_embeds, class_tokens_mask): |
|
b, num_inputs, c, h, w = id_pixel_values.shape |
|
id_pixel_values = id_pixel_values.view(b * num_inputs, c, h, w) |
|
|
|
shared_id_embeds = self.vision_model(id_pixel_values)[2] |
|
id_embeds = self.visual_projection(shared_id_embeds) |
|
id_embeds_2 = self.visual_projection_2(shared_id_embeds) |
|
|
|
id_embeds = id_embeds.view(b, num_inputs, 1, -1) |
|
id_embeds_2 = id_embeds_2.view(b, num_inputs, 1, -1) |
|
|
|
id_embeds = torch.cat((id_embeds, id_embeds_2), dim=-1) |
|
updated_prompt_embeds = self.fuse_module(prompt_embeds, id_embeds, class_tokens_mask) |
|
|
|
return updated_prompt_embeds |
|
|
|
|
|
class PhotoMakerLoader: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "photomaker_model_name": (ldm_patched.utils.path_utils.get_filename_list("photomaker"), )}} |
|
|
|
RETURN_TYPES = ("PHOTOMAKER",) |
|
FUNCTION = "load_photomaker_model" |
|
|
|
CATEGORY = "_for_testing/photomaker" |
|
|
|
def load_photomaker_model(self, photomaker_model_name): |
|
photomaker_model_path = ldm_patched.utils.path_utils.get_full_path("photomaker", photomaker_model_name) |
|
photomaker_model = PhotoMakerIDEncoder() |
|
data = ldm_patched.modules.utils.load_torch_file(photomaker_model_path, safe_load=True) |
|
if "id_encoder" in data: |
|
data = data["id_encoder"] |
|
photomaker_model.load_state_dict(data) |
|
return (photomaker_model,) |
|
|
|
|
|
class PhotoMakerEncode: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { "photomaker": ("PHOTOMAKER",), |
|
"image": ("IMAGE",), |
|
"clip": ("CLIP", ), |
|
"text": ("STRING", {"multiline": True, "default": "photograph of photomaker"}), |
|
}} |
|
|
|
RETURN_TYPES = ("CONDITIONING",) |
|
FUNCTION = "apply_photomaker" |
|
|
|
CATEGORY = "_for_testing/photomaker" |
|
|
|
def apply_photomaker(self, photomaker, image, clip, text): |
|
special_token = "photomaker" |
|
pixel_values = ldm_patched.modules.clip_vision.clip_preprocess(image.to(photomaker.load_device)).float() |
|
try: |
|
index = text.split(" ").index(special_token) + 1 |
|
except ValueError: |
|
index = -1 |
|
tokens = clip.tokenize(text, return_word_ids=True) |
|
out_tokens = {} |
|
for k in tokens: |
|
out_tokens[k] = [] |
|
for t in tokens[k]: |
|
f = list(filter(lambda x: x[2] != index, t)) |
|
while len(f) < len(t): |
|
f.append(t[-1]) |
|
out_tokens[k].append(f) |
|
|
|
cond, pooled = clip.encode_from_tokens(out_tokens, return_pooled=True) |
|
|
|
if index > 0: |
|
token_index = index - 1 |
|
num_id_images = 1 |
|
class_tokens_mask = [True if token_index <= i < token_index+num_id_images else False for i in range(77)] |
|
out = photomaker(id_pixel_values=pixel_values.unsqueeze(0), prompt_embeds=cond.to(photomaker.load_device), |
|
class_tokens_mask=torch.tensor(class_tokens_mask, dtype=torch.bool, device=photomaker.load_device).unsqueeze(0)) |
|
else: |
|
out = cond |
|
|
|
return ([[out, {"pooled_output": pooled}]], ) |
|
|
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"PhotoMakerLoader": PhotoMakerLoader, |
|
"PhotoMakerEncode": PhotoMakerEncode, |
|
} |
|
|
|
|