Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Size:
100K - 1M
License:
annotations_creators: | |
- crowdsourced | |
language: | |
- en | |
- ar | |
- bn | |
- fi | |
- id | |
- ja | |
- sw | |
- ko | |
- ru | |
- te | |
- th | |
language_creators: | |
- crowdsourced | |
license: | |
- apache-2.0 | |
multilinguality: | |
- multilingual | |
pretty_name: Answerable TyDi QA | |
size_categories: | |
- ['100K<n<1M'] | |
source_datasets: | |
- extended|wikipedia | |
task_categories: | |
- question-answering | |
task_ids: | |
- extractive-qa | |
# Dataset Card for "answerable-tydiqa" | |
## Dataset Description | |
- **Homepage:** [https://github.com/google-research-datasets/tydiqa](https://github.com/google-research-datasets/tydiqa) | |
- **Paper:** [Paper](https://aclanthology.org/2020.tacl-1.30/) | |
- **Size of downloaded dataset files:** 75.43 MB | |
- **Size of the generated dataset:** 131.78 MB | |
- **Total amount of disk used:** 207.21 MB | |
### Dataset Summary | |
[TyDi QA](https://huggingface.co/datasets/tydiqa) is a question answering dataset covering 11 typologically diverse languages. | |
Answerable TyDi QA is an extension of the GoldP subtask of the original TyDi QA dataset to also include unanswertable questions. | |
## Dataset Structure | |
The dataset contains a train and a validation set, with 116067 and 13325 examples, respectively. Access them with | |
```py | |
from datasets import load_dataset | |
dataset = load_dataset("copenlu/answerable_tydiqa") | |
train_set = dataset["train"] | |
validation_set = dataset["validation"] | |
``` | |
### Data Instances | |
Here is an example of an instance of the dataset: | |
``` | |
{'question_text': 'dimanakah Dr. Ernest François Eugène Douwes Dekker meninggal?', | |
'document_title': 'Ernest Douwes Dekker', | |
'language': 'indonesian', | |
'annotations': | |
{'answer_start': [45], | |
'answer_text': ['28 Agustus 1950'] | |
}, | |
'document_plaintext': 'Ernest Douwes Dekker wafat dini hari tanggal 28 Agustus 1950 (tertulis di batu nisannya; 29 Agustus 1950 versi van der Veur, 2006) dan dimakamkan di TMP Cikutra, Bandung.', | |
'document_url': 'https://id.wikipedia.org/wiki/Ernest%20Douwes%20Dekker'} | |
``` | |
Description of the dataset columns: | |
| Column name | type | Description | | |
| ----------- | ----------- | ----------- | | |
| document_title | str | The title of the Wikipedia article from which the data instance was generated | | |
| document_url | str | The URL of said article | | |
| language | str | The language of the data instance | | |
| question_text | str | The question to answer | | |
| document_plaintext | str | The context, a Wikipedia paragraph that might or might not contain the answer to the question | | |
| annotations["answer_start"] | list[int] | The char index in 'document_plaintext' where the answer starts. If the question is unanswerable - [-1] | | |
| annotations["answer_text"] | list[str] | The answer, a span of text from 'document_plaintext'. If the question is unanswerable - [''] | | |
**Notice:** If the question is *answerable*, annotations["answer_start"] and annotations["answer_text"] contain a list of length 1 | |
(In some variations of the dataset the lists might be longer, e.g. if more than one person annotated the instance, but not in our case). | |
If the question is *unanswerable*, annotations["answer_start"] will have "-1", while annotations["answer_text"] contain a list with an empty string. | |
## Useful stuff | |
Check out the [datasets ducumentations](https://huggingface.co/docs/datasets/quickstart) to learn how to manipulate and use the dataset. Specifically, you might find the following functions useful: | |
`dataset.filter`, for filtering out data (useful for keeping instances of specific languages, for example). | |
`dataset.map`, for manipulating the dataset. | |
`dataset.to_pandas`, to convert the dataset into a pandas.DataFrame format. | |
``` | |
@article{tydiqa, | |
title = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages}, | |
author = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki} | |
year = {2020}, | |
journal = {Transactions of the Association for Computational Linguistics} | |
} | |
``` | |
### Contributions | |
Thanks to [@thomwolf](https://github.com/thomwolf), [@albertvillanova](https://github.com/albertvillanova), [@lewtun](https://github.com/lewtun), [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset. |