vd4rl / offlinedv2 /dreamerv2 /configs.yaml
conglu's picture
upload code
6e5cc8b
raw
history blame
4.63 kB
defaults:
# Train Script
logdir: /dev/null
seed: 0
task: dmc_walker_walk
envs: 1
envs_parallel: none
render_size: [64, 64]
dmc_camera: -1
atari_grayscale: True
time_limit: 0
action_repeat: 1
# steps: 1e7
steps: 2e5
log_every: 1e4
eval_every: 1e5
eval_eps: 1
prefill: 10000
pretrain: 1
train_every: 5
train_steps: 1
expl_until: 0
replay: {capacity: 2e6, ongoing: False, minlen: 50, maxlen: 50, prioritize_ends: True}
dataset: {batch: 16, length: 50}
log_keys_video: ['image']
log_keys_sum: '^$'
log_keys_mean: '^$'
log_keys_max: '^$'
precision: 16
jit: True
offline_dir: [none]
offline_model_train_steps: 25001
offline_model_loaddir: none
offline_lmbd: 5.0
offline_penalty_type: none
offline_model_save_every: 5000
offline_split_val: False
offline_tune_lmbd: False
offline_lmbd_cons: 1.5
offline_model_dataset: {batch: 64, length: 50}
offline_train_dataset: {batch: 64, length: 50}
# Agent
clip_rewards: tanh
expl_behavior: greedy
expl_noise: 0.0
eval_noise: 0.0
eval_state_mean: False
# World Model
grad_heads: [decoder, reward, discount]
pred_discount: True
rssm: {ensemble: 7, hidden: 1024, deter: 1024, stoch: 32, discrete: 32, act: elu, norm: none, std_act: sigmoid2, min_std: 0.1}
encoder: {mlp_keys: '.*', cnn_keys: '.*', act: elu, norm: none, cnn_depth: 48, cnn_kernels: [4, 4, 4, 4], mlp_layers: [400, 400, 400, 400]}
decoder: {mlp_keys: '.*', cnn_keys: '.*', act: elu, norm: none, cnn_depth: 48, cnn_kernels: [5, 5, 6, 6], mlp_layers: [400, 400, 400, 400]}
reward_head: {layers: 4, units: 400, act: elu, norm: none, dist: mse}
discount_head: {layers: 4, units: 400, act: elu, norm: none, dist: binary}
loss_scales: {kl: 1.0, reward: 1.0, discount: 1.0, proprio: 1.0}
kl: {free: 0.0, forward: False, balance: 0.8, free_avg: True}
model_opt: {opt: adam, lr: 1e-4, eps: 1e-5, clip: 100, wd: 1e-6}
# Actor Critic
actor: {layers: 4, units: 400, act: elu, norm: none, dist: auto, min_std: 0.1}
critic: {layers: 4, units: 400, act: elu, norm: none, dist: mse}
actor_opt: {opt: adam, lr: 8e-5, eps: 1e-5, clip: 100, wd: 1e-6}
critic_opt: {opt: adam, lr: 2e-4, eps: 1e-5, clip: 100, wd: 1e-6}
discount: 0.99
discount_lambda: 0.95
imag_horizon: 5
actor_grad: auto
actor_grad_mix: 0.1
actor_ent: 2e-3
slow_target: True
slow_target_update: 100
slow_target_fraction: 1
slow_baseline: True
reward_norm: {momentum: 1.0, scale: 1.0, eps: 1e-8}
# Exploration
expl_intr_scale: 1.0
expl_extr_scale: 0.0
expl_opt: {opt: adam, lr: 3e-4, eps: 1e-5, clip: 100, wd: 1e-6}
expl_head: {layers: 4, units: 400, act: elu, norm: none, dist: mse}
expl_reward_norm: {momentum: 1.0, scale: 1.0, eps: 1e-8}
disag_target: stoch
disag_log: False
disag_models: 10
disag_offset: 1
disag_action_cond: True
expl_model_loss: kl
atari:
task: atari_pong
encoder: {mlp_keys: '$^', cnn_keys: 'image'}
decoder: {mlp_keys: '$^', cnn_keys: 'image'}
time_limit: 27000
action_repeat: 4
steps: 5e7
eval_every: 2.5e5
log_every: 1e4
prefill: 50000
train_every: 16
clip_rewards: tanh
rssm: {hidden: 600, deter: 600}
model_opt.lr: 2e-4
actor_opt.lr: 4e-5
critic_opt.lr: 1e-4
actor_ent: 1e-3
discount: 0.999
loss_scales.kl: 0.1
loss_scales.discount: 5.0
crafter:
task: crafter_reward
encoder: {mlp_keys: '$^', cnn_keys: 'image'}
decoder: {mlp_keys: '$^', cnn_keys: 'image'}
log_keys_max: '^log_achievement_.*'
log_keys_sum: '^log_reward$'
discount: 0.999
.*\.norm: layer
dmc_vision:
task: dmc_walker_walk
encoder: {mlp_keys: '$^', cnn_keys: 'image'}
decoder: {mlp_keys: '$^', cnn_keys: 'image'}
action_repeat: 2
eval_every: 1e4
prefill: 1000
pretrain: 100
clip_rewards: identity
pred_discount: False
replay.prioritize_ends: False
grad_heads: [decoder, reward]
rssm: {hidden: 200, deter: 200}
model_opt.lr: 3e-4
actor_opt.lr: 8e-5
critic_opt.lr: 8e-5
actor_ent: 1e-4
kl.free: 1.0
dmc_proprio:
task: dmc_walker_walk
encoder: {mlp_keys: '.*', cnn_keys: '$^'}
decoder: {mlp_keys: '.*', cnn_keys: '$^'}
action_repeat: 2
eval_every: 1e4
prefill: 1000
pretrain: 100
clip_rewards: identity
pred_discount: False
replay.prioritize_ends: False
grad_heads: [decoder, reward]
rssm: {hidden: 200, deter: 200}
model_opt.lr: 3e-4
actor_opt.lr: 8e-5
critic_opt.lr: 8e-5
actor_ent: 1e-4
kl.free: 1.0
debug:
jit: False
time_limit: 100
eval_every: 300
log_every: 300
prefill: 100
pretrain: 1
train_steps: 1
replay: {minlen: 10, maxlen: 30}
dataset: {batch: 10, length: 10}