Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Turkish
Size:
100K<n<1M
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" Shrinked Turkish NER """ | |
import os | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
""" | |
_DESCRIPTION = """\ | |
Shrinked version (48 entity type) of the turkish_ner. | |
Original turkish_ner dataset: Automatically annotated Turkish corpus for named entity recognition and text categorization using large-scale gazetteers. The constructed gazetteers contains approximately 300K entities with thousands of fine-grained entity types under 25 different domains. | |
Shrinked entity types are: academic, academic_person, aircraft, album_person, anatomy, animal, architect_person, capital, chemical, clothes, country, culture, currency, date, food, genre, government, government_person, language, location, material, measure, medical, military, military_person, nation, newspaper, organization, organization_person, person, production_art_music, production_art_music_person, quantity, religion, science, shape, ship, software, space, space_person, sport, sport_name, sport_person, structure, subject, tech, train, vehicle | |
""" | |
_HOMEPAGE = "https://www.kaggle.com/behcetsenturk/shrinked-twnertc-turkish-ner-data-by-kuzgunlar" | |
_LICENSE = "Attribution 4.0 International (CC BY 4.0)" | |
_FILENAME = "train.txt" | |
class TurkishShrinkedNER(datasets.GeneratorBasedBuilder): | |
def manual_download_instructions(self): | |
return """\ | |
You need to go to https://www.kaggle.com/behcetsenturk/shrinked-twnertc-turkish-ner-data-by-kuzgunlar, | |
and manually download the turkish_shrinked_ner. Once it is completed, | |
a file named archive.zip will be appeared in your Downloads folder | |
or whichever folder your browser chooses to save files to. You then have | |
to unzip the file and move train.txt under <path/to/folder>. | |
The <path/to/folder> can e.g. be "~/manual_data". | |
turkish_shrinked_ner can then be loaded using the following command `datasets.load_dataset("turkish_shrinked_ner", data_dir="<path/to/folder>")`. | |
""" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"O", | |
"B-academic", | |
"I-academic", | |
"B-academic_person", | |
"I-academic_person", | |
"B-aircraft", | |
"I-aircraft", | |
"B-album_person", | |
"I-album_person", | |
"B-anatomy", | |
"I-anatomy", | |
"B-animal", | |
"I-animal", | |
"B-architect_person", | |
"I-architect_person", | |
"B-capital", | |
"I-capital", | |
"B-chemical", | |
"I-chemical", | |
"B-clothes", | |
"I-clothes", | |
"B-country", | |
"I-country", | |
"B-culture", | |
"I-culture", | |
"B-currency", | |
"I-currency", | |
"B-date", | |
"I-date", | |
"B-food", | |
"I-food", | |
"B-genre", | |
"I-genre", | |
"B-government", | |
"I-government", | |
"B-government_person", | |
"I-government_person", | |
"B-language", | |
"I-language", | |
"B-location", | |
"I-location", | |
"B-material", | |
"I-material", | |
"B-measure", | |
"I-measure", | |
"B-medical", | |
"I-medical", | |
"B-military", | |
"I-military", | |
"B-military_person", | |
"I-military_person", | |
"B-nation", | |
"I-nation", | |
"B-newspaper", | |
"I-newspaper", | |
"B-organization", | |
"I-organization", | |
"B-organization_person", | |
"I-organization_person", | |
"B-person", | |
"I-person", | |
"B-production_art_music", | |
"I-production_art_music", | |
"B-production_art_music_person", | |
"I-production_art_music_person", | |
"B-quantity", | |
"I-quantity", | |
"B-religion", | |
"I-religion", | |
"B-science", | |
"I-science", | |
"B-shape", | |
"I-shape", | |
"B-ship", | |
"I-ship", | |
"B-software", | |
"I-software", | |
"B-space", | |
"I-space", | |
"B-space_person", | |
"I-space_person", | |
"B-sport", | |
"I-sport", | |
"B-sport_name", | |
"I-sport_name", | |
"B-sport_person", | |
"I-sport_person", | |
"B-structure", | |
"I-structure", | |
"B-subject", | |
"I-subject", | |
"B-tech", | |
"I-tech", | |
"B-train", | |
"I-train", | |
"B-vehicle", | |
"I-vehicle", | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
path_to_manual_file = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) | |
if not os.path.exists(path_to_manual_file): | |
raise FileNotFoundError( | |
"{path_to_manual_file} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('turkish_shrinked_ner', data_dir=...)` that includes file name {_FILENAME}. Manual download instructions: {self.manual_download_instructions}" | |
) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": os.path.join(path_to_manual_file, "train.txt"), | |
"split": "train", | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
"""Yields examples.""" | |
logger.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
id_ = 0 | |
tokens = [] | |
ner_tags = [] | |
for row in f: | |
if row == "": | |
continue | |
elif row == "\n": | |
yield id_, { | |
"id": str(id_), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |
tokens = [] | |
ner_tags = [] | |
id_ += 1 | |
else: | |
token, tag = row.split(" ") | |
tokens.append(token) | |
ner_tags.append(tag) | |
if len(tokens) > 0: | |
yield id_, { | |
"id": str(id_), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |