Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
parquet-converter commited on
Commit
82e6946
·
1 Parent(s): d91c63f

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,27 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,473 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - crowdsourced
4
- language_creators:
5
- - found
6
- language:
7
- - en
8
- license:
9
- - apache-2.0
10
- multilinguality:
11
- - monolingual
12
- size_categories:
13
- - 1K<n<10K
14
- source_datasets:
15
- - original
16
- task_categories:
17
- - question-answering
18
- task_ids:
19
- - open-domain-qa
20
- paperswithcode_id: selqa
21
- pretty_name: SelQA
22
- dataset_info:
23
- - config_name: answer_selection_analysis
24
- features:
25
- - name: section
26
- dtype: string
27
- - name: question
28
- dtype: string
29
- - name: article
30
- dtype: string
31
- - name: is_paraphrase
32
- dtype: bool
33
- - name: topic
34
- dtype:
35
- class_label:
36
- names:
37
- 0: MUSIC
38
- 1: TV
39
- 2: TRAVEL
40
- 3: ART
41
- 4: SPORT
42
- 5: COUNTRY
43
- 6: MOVIES
44
- 7: HISTORICAL EVENTS
45
- 8: SCIENCE
46
- 9: FOOD
47
- - name: answers
48
- sequence: int32
49
- - name: candidates
50
- sequence: string
51
- - name: q_types
52
- sequence:
53
- class_label:
54
- names:
55
- 0: what
56
- 1: why
57
- 2: when
58
- 3: who
59
- 4: where
60
- 5: how
61
- 6: ''
62
- splits:
63
- - name: train
64
- num_bytes: 9676758
65
- num_examples: 5529
66
- - name: test
67
- num_bytes: 2798537
68
- num_examples: 1590
69
- - name: validation
70
- num_bytes: 1378407
71
- num_examples: 785
72
- download_size: 14773444
73
- dataset_size: 13853702
74
- - config_name: answer_selection_experiments
75
- features:
76
- - name: question
77
- dtype: string
78
- - name: candidate
79
- dtype: string
80
- - name: label
81
- dtype:
82
- class_label:
83
- names:
84
- 0: '0'
85
- 1: '1'
86
- splits:
87
- - name: train
88
- num_bytes: 13782826
89
- num_examples: 66438
90
- - name: test
91
- num_bytes: 4008077
92
- num_examples: 19435
93
- - name: validation
94
- num_bytes: 1954877
95
- num_examples: 9377
96
- download_size: 18602700
97
- dataset_size: 19745780
98
- - config_name: answer_triggering_analysis
99
- features:
100
- - name: section
101
- dtype: string
102
- - name: question
103
- dtype: string
104
- - name: article
105
- dtype: string
106
- - name: is_paraphrase
107
- dtype: bool
108
- - name: topic
109
- dtype:
110
- class_label:
111
- names:
112
- 0: MUSIC
113
- 1: TV
114
- 2: TRAVEL
115
- 3: ART
116
- 4: SPORT
117
- 5: COUNTRY
118
- 6: MOVIES
119
- 7: HISTORICAL EVENTS
120
- 8: SCIENCE
121
- 9: FOOD
122
- - name: q_types
123
- sequence:
124
- class_label:
125
- names:
126
- 0: what
127
- 1: why
128
- 2: when
129
- 3: who
130
- 4: where
131
- 5: how
132
- 6: ''
133
- - name: candidate_list
134
- sequence:
135
- - name: article
136
- dtype: string
137
- - name: section
138
- dtype: string
139
- - name: candidates
140
- sequence: string
141
- - name: answers
142
- sequence: int32
143
- splits:
144
- - name: train
145
- num_bytes: 30176650
146
- num_examples: 5529
147
- - name: test
148
- num_bytes: 8766787
149
- num_examples: 1590
150
- - name: validation
151
- num_bytes: 4270904
152
- num_examples: 785
153
- download_size: 46149676
154
- dataset_size: 43214341
155
- - config_name: answer_triggering_experiments
156
- features:
157
- - name: question
158
- dtype: string
159
- - name: candidate
160
- dtype: string
161
- - name: label
162
- dtype:
163
- class_label:
164
- names:
165
- 0: '0'
166
- 1: '1'
167
- splits:
168
- - name: train
169
- num_bytes: 42956518
170
- num_examples: 205075
171
- - name: test
172
- num_bytes: 12504961
173
- num_examples: 59845
174
- - name: validation
175
- num_bytes: 6055616
176
- num_examples: 28798
177
- download_size: 57992239
178
- dataset_size: 61517095
179
- ---
180
-
181
- # Dataset Card for SelQA
182
-
183
- ## Table of Contents
184
- - [Dataset Description](#dataset-description)
185
- - [Dataset Summary](#dataset-summary)
186
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
187
- - [Languages](#languages)
188
- - [Dataset Structure](#dataset-structure)
189
- - [Data Instances](#data-instances)
190
- - [Data Fields](#data-fields)
191
- - [Data Splits](#data-splits)
192
- - [Dataset Creation](#dataset-creation)
193
- - [Curation Rationale](#curation-rationale)
194
- - [Source Data](#source-data)
195
- - [Annotations](#annotations)
196
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
197
- - [Considerations for Using the Data](#considerations-for-using-the-data)
198
- - [Social Impact of Dataset](#social-impact-of-dataset)
199
- - [Discussion of Biases](#discussion-of-biases)
200
- - [Other Known Limitations](#other-known-limitations)
201
- - [Additional Information](#additional-information)
202
- - [Dataset Curators](#dataset-curators)
203
- - [Licensing Information](#licensing-information)
204
- - [Citation Information](#citation-information)
205
- - [Contributions](#contributions)
206
-
207
- ## Dataset Description
208
-
209
- - **Homepage:** https://github.com/emorynlp/selqa
210
- - **Repository:** https://github.com/emorynlp/selqa
211
- - **Paper:** https://arxiv.org/abs/1606.00851
212
- - **Leaderboard:** [Needs More Information]
213
- - **Point of Contact:** Tomasz Jurczyk <http://tomaszjurczyk.com/>, Jinho D. Choi <http://www.mathcs.emory.edu/~choi/home.html>
214
-
215
- ### Dataset Summary
216
-
217
- SelQA: A New Benchmark for Selection-Based Question Answering
218
-
219
-
220
- ### Supported Tasks and Leaderboards
221
-
222
- Question Answering
223
-
224
- ### Languages
225
-
226
- English
227
-
228
- ## Dataset Structure
229
-
230
- ### Data Instances
231
-
232
- An example from the `answer selection` set:
233
- ```
234
- {
235
- "section": "Museums",
236
- "question": "Where are Rockefeller Museum and LA Mayer Institute for Islamic Art?",
237
- "article": "Israel",
238
- "is_paraphrase": true,
239
- "topic": "COUNTRY",
240
- "answers": [
241
- 5
242
- ],
243
- "candidates": [
244
- "The Israel Museum in Jerusalem is one of Israel's most important cultural institutions and houses the Dead Sea scrolls, along with an extensive collection of Judaica and European art.",
245
- "Israel's national Holocaust museum, Yad Vashem, is the world central archive of Holocaust-related information.",
246
- "Beth Hatefutsoth (the Diaspora Museum), on the campus of Tel Aviv University, is an interactive museum devoted to the history of Jewish communities around the world.",
247
- "Apart from the major museums in large cities, there are high-quality artspaces in many towns and \"kibbutzim\".",
248
- "\"Mishkan Le'Omanut\" on Kibbutz Ein Harod Meuhad is the largest art museum in the north of the country.",
249
- "Several Israeli museums are devoted to Islamic culture, including the Rockefeller Museum and the L. A. Mayer Institute for Islamic Art, both in Jerusalem.",
250
- "The Rockefeller specializes in archaeological remains from the Ottoman and other periods of Middle East history.",
251
- "It is also the home of the first hominid fossil skull found in Western Asia called Galilee Man.",
252
- "A cast of the skull is on display at the Israel Museum."
253
- ],
254
- "q_types": [
255
- "where"
256
- ]
257
- }
258
- ```
259
-
260
- An example from the `answer triggering` set:
261
- ```
262
- {
263
- "section": "Museums",
264
- "question": "Where are Rockefeller Museum and LA Mayer Institute for Islamic Art?",
265
- "article": "Israel",
266
- "is_paraphrase": true,
267
- "topic": "COUNTRY",
268
- "candidate_list": [
269
- {
270
- "article": "List of places in Jerusalem",
271
- "section": "List_of_places_in_Jerusalem-Museums",
272
- "answers": [],
273
- "candidates": [
274
- " Israel Museum *Shrine of the Book *Rockefeller Museum of Archeology Bible Lands Museum Jerusalem Yad Vashem Holocaust Museum L.A. Mayer Institute for Islamic Art Bloomfield Science Museum Natural History Museum Museum of Italian Jewish Art Ticho House Tower of David Jerusalem Tax Museum Herzl Museum Siebenberg House Museums.",
275
- "Museum on the Seam "
276
- ]
277
- },
278
- {
279
- "article": "Israel",
280
- "section": "Israel-Museums",
281
- "answers": [
282
- 5
283
- ],
284
- "candidates": [
285
- "The Israel Museum in Jerusalem is one of Israel's most important cultural institutions and houses the Dead Sea scrolls, along with an extensive collection of Judaica and European art.",
286
- "Israel's national Holocaust museum, Yad Vashem, is the world central archive of Holocaust-related information.",
287
- "Beth Hatefutsoth (the Diaspora Museum), on the campus of Tel Aviv University, is an interactive museum devoted to the history of Jewish communities around the world.",
288
- "Apart from the major museums in large cities, there are high-quality artspaces in many towns and \"kibbutzim\".",
289
- "\"Mishkan Le'Omanut\" on Kibbutz Ein Harod Meuhad is the largest art museum in the north of the country.",
290
- "Several Israeli museums are devoted to Islamic culture, including the Rockefeller Museum and the L. A. Mayer Institute for Islamic Art, both in Jerusalem.",
291
- "The Rockefeller specializes in archaeological remains from the Ottoman and other periods of Middle East history.",
292
- "It is also the home of the first hominid fossil skull found in Western Asia called Galilee Man.",
293
- "A cast of the skull is on display at the Israel Museum."
294
- ]
295
- },
296
- {
297
- "article": "L. A. Mayer Institute for Islamic Art",
298
- "section": "L._A._Mayer_Institute_for_Islamic_Art-Abstract",
299
- "answers": [],
300
- "candidates": [
301
- "The L.A. Mayer Institute for Islamic Art (Hebrew: \u05de\u05d5\u05d6\u05d9\u05d0\u05d5\u05df \u05dc.",
302
- "\u05d0.",
303
- "\u05de\u05d0\u05d9\u05e8 \u05dc\u05d0\u05de\u05e0\u05d5\u05ea \u05d4\u05d0\u05e1\u05dc\u05d0\u05dd) is a museum in Jerusalem, Israel, established in 1974.",
304
- "It is located in Katamon, down the road from the Jerusalem Theater.",
305
- "The museum houses Islamic pottery, textiles, jewelry, ceremonial objects and other Islamic cultural artifacts.",
306
- "It is not to be confused with the Islamic Museum, Jerusalem. "
307
- ]
308
- },
309
- {
310
- "article": "Islamic Museum, Jerusalem",
311
- "section": "Islamic_Museum,_Jerusalem-Abstract",
312
- "answers": [],
313
- "candidates": [
314
- "The Islamic Museum is a museum on the Temple Mount in the Old City section of Jerusalem.",
315
- "On display are exhibits from ten periods of Islamic history encompassing several Muslim regions.",
316
- "The museum is located adjacent to al-Aqsa Mosque.",
317
- "It is not to be confused with the L. A. Mayer Institute for Islamic Art, also a museum in Jerusalem. "
318
- ]
319
- },
320
- {
321
- "article": "L. A. Mayer Institute for Islamic Art",
322
- "section": "L._A._Mayer_Institute_for_Islamic_Art-Contemporary_Arab_art",
323
- "answers": [],
324
- "candidates": [
325
- "In 2008, a group exhibit of contemporary Arab art opened at L.A. Mayer Institute, the first show of local Arab art in an Israeli museum and the first to be mounted by an Arab curator.",
326
- "Thirteen Arab artists participated in the show. "
327
- ]
328
- }
329
- ],
330
- "q_types": [
331
- "where"
332
- ]
333
- }
334
- ```
335
-
336
- An example from any of the `experiments` data:
337
- ```
338
- Where are Rockefeller Museum and LA Mayer Institute for Islamic Art ? The Israel Museum in Jerusalem is one of Israel 's most important cultural institutions and houses the Dead Sea scrolls , along with an extensive collection of Judaica and European art . 0
339
- Where are Rockefeller Museum and LA Mayer Institute for Islamic Art ? Israel 's national Holocaust museum , Yad Vashem , is the world central archive of Holocaust - related information . 0
340
- Where are Rockefeller Museum and LA Mayer Institute for Islamic Art ? Beth Hatefutsoth ( the Diaspora Museum ) , on the campus of Tel Aviv University , is an interactive museum devoted to the history of Jewish communities around the world . 0
341
- Where are Rockefeller Museum and LA Mayer Institute for Islamic Art ? Apart from the major museums in large cities , there are high - quality artspaces in many towns and " kibbutzim " . 0
342
- Where are Rockefeller Museum and LA Mayer Institute for Islamic Art ? " Mishkan Le'Omanut " on Kibbutz Ein Harod Meuhad is the largest art museum in the north of the country . 0
343
- Where are Rockefeller Museum and LA Mayer Institute for Islamic Art ? Several Israeli museums are devoted to Islamic culture , including the Rockefeller Museum and the L. A. Mayer Institute for Islamic Art , both in Jerusalem . 1
344
- Where are Rockefeller Museum and LA Mayer Institute for Islamic Art ? The Rockefeller specializes in archaeological remains from the Ottoman and other periods of Middle East history . 0
345
- Where are Rockefeller Museum and LA Mayer Institute for Islamic Art ? It is also the home of the first hominid fossil skull found in Western Asia called Galilee Man . 0
346
- Where are Rockefeller Museum and LA Mayer Institute for Islamic Art ? A cast of the skull is on display at the Israel Museum . 0
347
- ```
348
-
349
- ### Data Fields
350
-
351
- #### Answer Selection
352
- ##### Data for Analysis
353
-
354
- for analysis, the columns are:
355
-
356
- * `question`: the question.
357
- * `article`: the Wikipedia article related to this question.
358
- * `section`: the section in the Wikipedia article related to this question.
359
- * `topic`: the topic of this question, where the topics are *MUSIC*, *TV*, *TRAVEL*, *ART*, *SPORT*, *COUNTRY*, *MOVIES*, *HISTORICAL EVENTS*, *SCIENCE*, *FOOD*.
360
- * `q_types`: the list of question types, where the types are *what*, *why*, *when*, *who*, *where*, and *how*. If empty, none of the those types are recognized in this question.
361
- * `is_paraphrase`: *True* if this question is a paragraph of some other question in this dataset; otherwise, *False*.
362
- * `candidates`: the list of sentences in the related section.
363
- * `answers`: the list of candidate indices containing the answer context of this question.
364
-
365
- ##### Data for Experiments
366
-
367
- for experiments, each column gives:
368
-
369
- * `0`: a question where all tokens are separated.
370
- * `1`: a candidate of the question where all tokens are separated.
371
- * `2`: the label where `0` implies no answer to the question is found in this candidate and `1` implies the answer is found.
372
-
373
- #### Answer Triggering
374
- ##### Data for Analysis
375
-
376
- for analysis, the columns are:
377
-
378
- * `question`: the question.
379
- * `article`: the Wikipedia article related to this question.
380
- * `section`: the section in the Wikipedia article related to this question.
381
- * `topic`: the topic of this question, where the topics are *MUSIC*, *TV*, *TRAVEL*, *ART*, *SPORT*, *COUNTRY*, *MOVIES*, *HISTORICAL EVENTS*, *SCIENCE*, *FOOD*.
382
- * `q_types`: the list of question types, where the types are *what*, *why*, *when*, *who*, *where*, and *how*. If empty, none of the those types are recognized in this question.
383
- * `is_paraphrase`: *True* if this question is a paragraph of some other question in this dataset; otherwise, *False*.
384
- * `candidate_list`: the list of 5 candidate sections:
385
- * `article`: the title of the candidate article.
386
- * `section`: the section in the candidate article.
387
- * `candidates`: the list of sentences in this candidate section.
388
- * `answers`: the list of candidate indices containing the answer context of this question (can be empty).
389
-
390
- ##### Data for Experiments
391
-
392
- for experiments, each column gives:
393
-
394
- * `0`: a question where all tokens are separated.
395
- * `1`: a candidate of the question where all tokens are separated.
396
- * `2`: the label where `0` implies no answer to the question is found in this candidate and `1` implies the answer is found.
397
-
398
- ### Data Splits
399
-
400
- | |Train| Valid| Test|
401
- | --- | --- | --- | --- |
402
- | Answer Selection | 5529 | 785 | 1590 |
403
- | Answer Triggering | 27645 | 3925 | 7950 |
404
-
405
- ## Dataset Creation
406
-
407
- ### Curation Rationale
408
-
409
- To encourage research and provide an initial benchmark for selection based question answering and answer triggering tasks
410
-
411
- ### Source Data
412
-
413
- #### Initial Data Collection and Normalization
414
-
415
- [Needs More Information]
416
-
417
- #### Who are the source language producers?
418
-
419
- [Needs More Information]
420
-
421
- ### Annotations
422
-
423
- #### Annotation process
424
-
425
- Crowdsourced
426
-
427
- #### Who are the annotators?
428
-
429
- [Needs More Information]
430
-
431
- ### Personal and Sensitive Information
432
-
433
- [Needs More Information]
434
-
435
- ## Considerations for Using the Data
436
-
437
- ### Social Impact of Dataset
438
-
439
- The purpose of this dataset is to help develop better selection-based question answering systems.
440
-
441
- ### Discussion of Biases
442
-
443
- [Needs More Information]
444
-
445
- ### Other Known Limitations
446
-
447
- [Needs More Information]
448
-
449
- ## Additional Information
450
-
451
- ### Dataset Curators
452
-
453
- [Needs More Information]
454
-
455
- ### Licensing Information
456
-
457
- Apache License 2.0
458
-
459
- ### Citation Information
460
- @InProceedings{7814688,
461
- author={T. {Jurczyk} and M. {Zhai} and J. D. {Choi}},
462
- booktitle={2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)},
463
- title={SelQA: A New Benchmark for Selection-Based Question Answering},
464
- year={2016},
465
- volume={},
466
- number={},
467
- pages={820-827},
468
- doi={10.1109/ICTAI.2016.0128}
469
- }
470
-
471
- ### Contributions
472
-
473
- Thanks to [@Bharat123rox](https://github.com/Bharat123rox) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
answer_selection_analysis/selqa-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:303313c2f7d230b437e15f9eec318d3142556bf2d5fea66b051972969f3b3c36
3
+ size 1625035
answer_selection_analysis/selqa-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68df038218905dc98f9f4778a674317d3d6981fa964b4cac133772956bb6b3c9
3
+ size 5575769
answer_selection_analysis/selqa-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3000b1e4624a52e8f121cf4a2a8141a024c6cacabfd2dd4ded7214996c1ff01
3
+ size 781513
answer_selection_experiments/selqa-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a4269c3975b8d0f5828c6281c7a609cdbe62ff38a738eb61b5852af038da332
3
+ size 1803902
answer_selection_experiments/selqa-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e072414e92bef8a07ec2db04f2cd2d522f23ca057481a6bc04924296413b54c4
3
+ size 6198250
answer_selection_experiments/selqa-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd37d9b351e31030abca2b0ac036317d581b54d1931396b1924deef370b1441e
3
+ size 887819
answer_triggering_analysis/selqa-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ceab302edb5e4ddc381c0a103aa7a1cb97aaa6c66dbcaf5313205f15cfdc5fb
3
+ size 5311393
answer_triggering_analysis/selqa-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55e631ec310e25afd81e93a2de34625e128357c27dffa1adb5565f33b6b741b3
3
+ size 18176470
answer_triggering_analysis/selqa-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ded1d427e96883bf87dbbd0d9a8847f807b3686aa3178cd08be6ae77ed87005
3
+ size 2562055
answer_triggering_experiments/selqa-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa3d825df8729c4a63c220bee718b78a43cbd180204a595c42e1f88d5930d1e4
3
+ size 5165742
answer_triggering_experiments/selqa-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4428aa2e854f289ae2de777ca6c90b1f8023e0faf15e4a2b75d52b09eb38fe5
3
+ size 17708407
answer_triggering_experiments/selqa-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2d1ab407ab34bf9135eb093b5f02e625e4707d997cbddcba6bd46d9649fc68b
3
+ size 2494266
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"answer_selection_analysis": {"description": "The SelQA dataset provides crowdsourced annotation for two selection-based question answer tasks, \nanswer sentence selection and answer triggering.\n", "citation": "@InProceedings{7814688,\n author={T. {Jurczyk} and M. {Zhai} and J. D. {Choi}},\n booktitle={2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)}, \n title={SelQA: A New Benchmark for Selection-Based Question Answering}, \n year={2016},\n volume={},\n number={},\n pages={820-827},\n doi={10.1109/ICTAI.2016.0128}\n}\n", "homepage": "", "license": "", "features": {"section": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "article": {"dtype": "string", "id": null, "_type": "Value"}, "is_paraphrase": {"dtype": "bool", "id": null, "_type": "Value"}, "topic": {"num_classes": 10, "names": ["MUSIC", "TV", "TRAVEL", "ART", "SPORT", "COUNTRY", "MOVIES", "HISTORICAL EVENTS", "SCIENCE", "FOOD"], "names_file": null, "id": null, "_type": "ClassLabel"}, "answers": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "candidates": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "q_types": {"feature": {"num_classes": 7, "names": ["what", "why", "when", "who", "where", "how", ""], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "selqa", "config_name": "answer_selection_analysis", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 9676758, "num_examples": 5529, "dataset_name": "selqa"}, "test": {"name": "test", "num_bytes": 2798537, "num_examples": 1590, "dataset_name": "selqa"}, "validation": {"name": "validation", "num_bytes": 1378407, "num_examples": 785, "dataset_name": "selqa"}}, "download_checksums": {"https://raw.githubusercontent.com/emorynlp/selqa/master/ass/selqa-ass-train.json": {"num_bytes": 10320158, "checksum": "30622b7820bb2fa8e766d0ad3c7cf29dac658772cd763a9dabf81d9cab1fd534"}, "https://raw.githubusercontent.com/emorynlp/selqa/master/ass/selqa-ass-dev.json": {"num_bytes": 1470163, "checksum": "b4e6687e44a30b486e24d2b06aa3012ec07d61145f3521f35b7d49daae3e0ca4"}, "https://raw.githubusercontent.com/emorynlp/selqa/master/ass/selqa-ass-test.json": {"num_bytes": 2983123, "checksum": "ca1184d94cc9030883723fab76ef8180b3cf5fb142549a5648d22f59fe7c6fc6"}}, "download_size": 14773444, "post_processing_size": null, "dataset_size": 13853702, "size_in_bytes": 28627146}, "answer_selection_experiments": {"description": "The SelQA dataset provides crowdsourced annotation for two selection-based question answer tasks, \nanswer sentence selection and answer triggering.\n", "citation": "@InProceedings{7814688,\n author={T. {Jurczyk} and M. {Zhai} and J. D. {Choi}},\n booktitle={2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)}, \n title={SelQA: A New Benchmark for Selection-Based Question Answering}, \n year={2016},\n volume={},\n number={},\n pages={820-827},\n doi={10.1109/ICTAI.2016.0128}\n}\n", "homepage": "", "license": "", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "candidate": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["0", "1"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "selqa", "config_name": "answer_selection_experiments", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 13782826, "num_examples": 66438, "dataset_name": "selqa"}, "test": {"name": "test", "num_bytes": 4008077, "num_examples": 19435, "dataset_name": "selqa"}, "validation": {"name": "validation", "num_bytes": 1954877, "num_examples": 9377, "dataset_name": "selqa"}}, "download_checksums": {"https://raw.githubusercontent.com/emorynlp/selqa/master/ass/selqa-ass-train.tsv": {"num_bytes": 12985514, "checksum": "9f40017c0bf97f2f5816fba5ac18c7eafb847a9e351d85584afaecd1296010db"}, "https://raw.githubusercontent.com/emorynlp/selqa/master/ass/selqa-ass-dev.tsv": {"num_bytes": 1842345, "checksum": "0f0d73b379bb4efc6e678e36b122ea17c957998a1d002e3c480b3bc7854f77a9"}, "https://raw.githubusercontent.com/emorynlp/selqa/master/ass/selqa-ass-test.tsv": {"num_bytes": 3774841, "checksum": "4129ffa31237eb7f673baf6313bdd7d01658000c253b45e195d235493a435b91"}}, "download_size": 18602700, "post_processing_size": null, "dataset_size": 19745780, "size_in_bytes": 38348480}, "answer_triggering_analysis": {"description": "The SelQA dataset provides crowdsourced annotation for two selection-based question answer tasks, \nanswer sentence selection and answer triggering.\n", "citation": "@InProceedings{7814688,\n author={T. {Jurczyk} and M. {Zhai} and J. D. {Choi}},\n booktitle={2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)}, \n title={SelQA: A New Benchmark for Selection-Based Question Answering}, \n year={2016},\n volume={},\n number={},\n pages={820-827},\n doi={10.1109/ICTAI.2016.0128}\n}\n", "homepage": "", "license": "", "features": {"section": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "article": {"dtype": "string", "id": null, "_type": "Value"}, "is_paraphrase": {"dtype": "bool", "id": null, "_type": "Value"}, "topic": {"num_classes": 10, "names": ["MUSIC", "TV", "TRAVEL", "ART", "SPORT", "COUNTRY", "MOVIES", "HISTORICAL EVENTS", "SCIENCE", "FOOD"], "names_file": null, "id": null, "_type": "ClassLabel"}, "q_types": {"feature": {"num_classes": 7, "names": ["what", "why", "when", "who", "where", "how", ""], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}, "candidate_list": {"feature": {"article": {"dtype": "string", "id": null, "_type": "Value"}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "candidates": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "answers": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "selqa", "config_name": "answer_triggering_analysis", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 30176650, "num_examples": 5529, "dataset_name": "selqa"}, "test": {"name": "test", "num_bytes": 8766787, "num_examples": 1590, "dataset_name": "selqa"}, "validation": {"name": "validation", "num_bytes": 4270904, "num_examples": 785, "dataset_name": "selqa"}}, "download_checksums": {"https://raw.githubusercontent.com/emorynlp/selqa/master/at/selqa-at-train.json": {"num_bytes": 32230643, "checksum": "6af1e82dbec94d2c87c0cd6463a0d7eba1dd746cbdc72f481697843c466f4952"}, "https://raw.githubusercontent.com/emorynlp/selqa/master/at/selqa-at-dev.json": {"num_bytes": 4562321, "checksum": "8cf266e9b8404e9ba1c062a1dbf43c79ae9bd2da929cb11351872c4f221815ac"}, "https://raw.githubusercontent.com/emorynlp/selqa/master/at/selqa-at-test.json": {"num_bytes": 9356712, "checksum": "38971e74506b74c808756fefb1816453eb1a3c3989f2feb77d864c93da468905"}}, "download_size": 46149676, "post_processing_size": null, "dataset_size": 43214341, "size_in_bytes": 89364017}, "answer_triggering_experiments": {"description": "The SelQA dataset provides crowdsourced annotation for two selection-based question answer tasks, \nanswer sentence selection and answer triggering.\n", "citation": "@InProceedings{7814688,\n author={T. {Jurczyk} and M. {Zhai} and J. D. {Choi}},\n booktitle={2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)}, \n title={SelQA: A New Benchmark for Selection-Based Question Answering}, \n year={2016},\n volume={},\n number={},\n pages={820-827},\n doi={10.1109/ICTAI.2016.0128}\n}\n", "homepage": "", "license": "", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "candidate": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["0", "1"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "selqa", "config_name": "answer_triggering_experiments", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 42956518, "num_examples": 205075, "dataset_name": "selqa"}, "test": {"name": "test", "num_bytes": 12504961, "num_examples": 59845, "dataset_name": "selqa"}, "validation": {"name": "validation", "num_bytes": 6055616, "num_examples": 28798, "dataset_name": "selqa"}}, "download_checksums": {"https://raw.githubusercontent.com/emorynlp/selqa/master/at/selqa-at-train.tsv": {"num_bytes": 40495450, "checksum": "9cf58039e30583187e7e93e19043dceb2540d72fc13eb4eb09fd8147b3022346"}, "https://raw.githubusercontent.com/emorynlp/selqa/master/at/selqa-at-dev.tsv": {"num_bytes": 5710016, "checksum": "76466b282ab62353e029af4292acb658c0659860c716c637c3e5f3faa9c693d1"}, "https://raw.githubusercontent.com/emorynlp/selqa/master/at/selqa-at-test.tsv": {"num_bytes": 11786773, "checksum": "4151fa580983f7d3903ea70e71d5d86f20abe75cb975b7d77434ea2e978fc132"}}, "download_size": 57992239, "post_processing_size": null, "dataset_size": 61517095, "size_in_bytes": 119509334}}
 
 
selqa.py DELETED
@@ -1,300 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """SelQA: A New Benchmark for Selection-Based Question Answering"""
16
-
17
-
18
- import csv
19
- import json
20
-
21
- import datasets
22
-
23
-
24
- # TODO: Add BibTeX citation
25
- # Find for instance the citation on arxiv or on the dataset repo/website
26
- _CITATION = """\
27
- @InProceedings{7814688,
28
- author={T. {Jurczyk} and M. {Zhai} and J. D. {Choi}},
29
- booktitle={2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)},
30
- title={SelQA: A New Benchmark for Selection-Based Question Answering},
31
- year={2016},
32
- volume={},
33
- number={},
34
- pages={820-827},
35
- doi={10.1109/ICTAI.2016.0128}
36
- }
37
- """
38
-
39
- # TODO: Add description of the dataset here
40
- # You can copy an official description
41
- _DESCRIPTION = """\
42
- The SelQA dataset provides crowdsourced annotation for two selection-based question answer tasks,
43
- answer sentence selection and answer triggering.
44
- """
45
-
46
- # TODO: Add a link to an official homepage for the dataset here
47
- _HOMEPAGE = ""
48
-
49
- # TODO: Add the licence for the dataset here if you can find it
50
- _LICENSE = ""
51
-
52
- # TODO: Add link to the official dataset URLs here
53
- # The HuggingFace dataset library don't host the datasets but only point to the original files
54
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
55
- types = {
56
- "answer_selection": "ass",
57
- "answer_triggering": "at",
58
- }
59
-
60
- modes = {"analysis": "json", "experiments": "tsv"}
61
-
62
-
63
- class SelqaConfig(datasets.BuilderConfig):
64
- """ "BuilderConfig for SelQA Dataset"""
65
-
66
- def __init__(self, mode, type_, **kwargs):
67
- super(SelqaConfig, self).__init__(**kwargs)
68
- self.mode = mode
69
- self.type_ = type_
70
-
71
-
72
- # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
73
- class Selqa(datasets.GeneratorBasedBuilder):
74
- """A New Benchmark for Selection-based Question Answering."""
75
-
76
- VERSION = datasets.Version("1.1.0")
77
-
78
- # This is an example of a dataset with multiple configurations.
79
- # If you don't want/need to define several sub-sets in your dataset,
80
- # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
81
-
82
- # If you need to make complex sub-parts in the datasets with configurable options
83
- # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
84
- BUILDER_CONFIG_CLASS = SelqaConfig
85
-
86
- # You will be able to load one or the other configurations in the following list with
87
- # data = datasets.load_dataset('my_dataset', 'first_domain')
88
- # data = datasets.load_dataset('my_dataset', 'second_domain')
89
- BUILDER_CONFIGS = [
90
- SelqaConfig(
91
- name="answer_selection_analysis",
92
- mode="analysis",
93
- type_="answer_selection",
94
- version=VERSION,
95
- description="This part covers answer selection analysis",
96
- ),
97
- SelqaConfig(
98
- name="answer_selection_experiments",
99
- mode="experiments",
100
- type_="answer_selection",
101
- version=VERSION,
102
- description="This part covers answer selection experiments",
103
- ),
104
- SelqaConfig(
105
- name="answer_triggering_analysis",
106
- mode="analysis",
107
- type_="answer_triggering",
108
- version=VERSION,
109
- description="This part covers answer triggering analysis",
110
- ),
111
- SelqaConfig(
112
- name="answer_triggering_experiments",
113
- mode="experiments",
114
- type_="answer_triggering",
115
- version=VERSION,
116
- description="This part covers answer triggering experiments",
117
- ),
118
- ]
119
-
120
- DEFAULT_CONFIG_NAME = "answer_selection_analysis" # It's not mandatory to have a default configuration. Just use one if it make sense.
121
-
122
- def _info(self):
123
- if (
124
- self.config.mode == "experiments"
125
- ): # This is the name of the configuration selected in BUILDER_CONFIGS above
126
- features = datasets.Features(
127
- {
128
- "question": datasets.Value("string"),
129
- "candidate": datasets.Value("string"),
130
- "label": datasets.ClassLabel(names=["0", "1"]),
131
- }
132
- )
133
- else:
134
- if self.config.type_ == "answer_selection":
135
- features = datasets.Features(
136
- {
137
- "section": datasets.Value("string"),
138
- "question": datasets.Value("string"),
139
- "article": datasets.Value("string"),
140
- "is_paraphrase": datasets.Value("bool"),
141
- "topic": datasets.ClassLabel(
142
- names=[
143
- "MUSIC",
144
- "TV",
145
- "TRAVEL",
146
- "ART",
147
- "SPORT",
148
- "COUNTRY",
149
- "MOVIES",
150
- "HISTORICAL EVENTS",
151
- "SCIENCE",
152
- "FOOD",
153
- ]
154
- ),
155
- "answers": datasets.Sequence(datasets.Value("int32")),
156
- "candidates": datasets.Sequence(datasets.Value("string")),
157
- "q_types": datasets.Sequence(
158
- datasets.ClassLabel(names=["what", "why", "when", "who", "where", "how", ""])
159
- ),
160
- }
161
- )
162
- else:
163
- features = datasets.Features(
164
- {
165
- "section": datasets.Value("string"),
166
- "question": datasets.Value("string"),
167
- "article": datasets.Value("string"),
168
- "is_paraphrase": datasets.Value("bool"),
169
- "topic": datasets.ClassLabel(
170
- names=[
171
- "MUSIC",
172
- "TV",
173
- "TRAVEL",
174
- "ART",
175
- "SPORT",
176
- "COUNTRY",
177
- "MOVIES",
178
- "HISTORICAL EVENTS",
179
- "SCIENCE",
180
- "FOOD",
181
- ]
182
- ),
183
- "q_types": datasets.Sequence(
184
- datasets.ClassLabel(names=["what", "why", "when", "who", "where", "how", ""])
185
- ),
186
- "candidate_list": datasets.Sequence(
187
- {
188
- "article": datasets.Value("string"),
189
- "section": datasets.Value("string"),
190
- "candidates": datasets.Sequence(datasets.Value("string")),
191
- "answers": datasets.Sequence(datasets.Value("int32")),
192
- }
193
- ),
194
- }
195
- )
196
- return datasets.DatasetInfo(
197
- # This is the description that will appear on the datasets page.
198
- description=_DESCRIPTION,
199
- # This defines the different columns of the dataset and their types
200
- features=features, # Here we define them above because they are different between the two configurations
201
- # If there's a common (input, target) tuple from the features,
202
- # specify them here. They'll be used if as_supervised=True in
203
- # builder.as_dataset.
204
- supervised_keys=None,
205
- # Homepage of the dataset for documentation
206
- homepage=_HOMEPAGE,
207
- # License for the dataset if available
208
- license=_LICENSE,
209
- # Citation for the dataset
210
- citation=_CITATION,
211
- )
212
-
213
- def _split_generators(self, dl_manager):
214
- """Returns SplitGenerators."""
215
- # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
216
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
217
-
218
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
219
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
220
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
221
- urls = {
222
- "train": f"https://raw.githubusercontent.com/emorynlp/selqa/master/{types[self.config.type_]}/selqa-{types[self.config.type_]}-train.{modes[self.config.mode]}",
223
- "dev": f"https://raw.githubusercontent.com/emorynlp/selqa/master/{types[self.config.type_]}/selqa-{types[self.config.type_]}-dev.{modes[self.config.mode]}",
224
- "test": f"https://raw.githubusercontent.com/emorynlp/selqa/master/{types[self.config.type_]}/selqa-{types[self.config.type_]}-test.{modes[self.config.mode]}",
225
- }
226
- data_dir = dl_manager.download_and_extract(urls)
227
- return [
228
- datasets.SplitGenerator(
229
- name=datasets.Split.TRAIN,
230
- # These kwargs will be passed to _generate_examples
231
- gen_kwargs={
232
- "filepath": data_dir["train"],
233
- "split": "train",
234
- },
235
- ),
236
- datasets.SplitGenerator(
237
- name=datasets.Split.TEST,
238
- # These kwargs will be passed to _generate_examples
239
- gen_kwargs={"filepath": data_dir["test"], "split": "test"},
240
- ),
241
- datasets.SplitGenerator(
242
- name=datasets.Split.VALIDATION,
243
- # These kwargs will be passed to _generate_examples
244
- gen_kwargs={
245
- "filepath": data_dir["dev"],
246
- "split": "dev",
247
- },
248
- ),
249
- ]
250
-
251
- def _generate_examples(self, filepath, split):
252
- """Yields examples."""
253
- # TODO: This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
254
- # It is in charge of opening the given file and yielding (key, example) tuples from the dataset
255
- # The key is not important, it's more here for legacy reason (legacy from tfds)
256
- with open(filepath, encoding="utf-8") as f:
257
- if self.config.mode == "experiments":
258
- csv_reader = csv.DictReader(
259
- f, delimiter="\t", quoting=csv.QUOTE_NONE, fieldnames=["question", "candidate", "label"]
260
- )
261
- for id_, row in enumerate(csv_reader):
262
- yield id_, row
263
- else:
264
- if self.config.type_ == "answer_selection":
265
- for row in f:
266
- data = json.loads(row)
267
- for id_, item in enumerate(data):
268
- yield id_, {
269
- "section": item["section"],
270
- "question": item["question"],
271
- "article": item["article"],
272
- "is_paraphrase": item["is_paraphrase"],
273
- "topic": item["topic"],
274
- "answers": item["answers"],
275
- "candidates": item["candidates"],
276
- "q_types": item["q_types"],
277
- }
278
- else:
279
- for row in f:
280
- data = json.loads(row)
281
- for id_, item in enumerate(data):
282
- candidate_list = []
283
- for entity in item["candidate_list"]:
284
- candidate_list.append(
285
- {
286
- "article": entity["article"],
287
- "section": entity["section"],
288
- "answers": entity["answers"],
289
- "candidates": entity["candidates"],
290
- }
291
- )
292
- yield id_, {
293
- "section": item["section"],
294
- "question": item["question"],
295
- "article": item["article"],
296
- "is_paraphrase": item["is_paraphrase"],
297
- "topic": item["topic"],
298
- "q_types": item["q_types"],
299
- "candidate_list": candidate_list,
300
- }