Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
selqa / selqa.py
system's picture
system HF staff
Update files from the datasets library (from 1.6.1)
f3da7b3
raw
history blame
13.6 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""SelQA: A New Benchmark for Selection-Based Question Answering"""
import csv
import json
import datasets
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{7814688,
author={T. {Jurczyk} and M. {Zhai} and J. D. {Choi}},
booktitle={2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)},
title={SelQA: A New Benchmark for Selection-Based Question Answering},
year={2016},
volume={},
number={},
pages={820-827},
doi={10.1109/ICTAI.2016.0128}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
The SelQA dataset provides crowdsourced annotation for two selection-based question answer tasks,
answer sentence selection and answer triggering.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
types = {
"answer_selection": "ass",
"answer_triggering": "at",
}
modes = {"analysis": "json", "experiments": "tsv"}
class SelqaConfig(datasets.BuilderConfig):
""" "BuilderConfig for SelQA Dataset"""
def __init__(self, mode, type_, **kwargs):
super(SelqaConfig, self).__init__(**kwargs)
self.mode = mode
self.type_ = type_
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class Selqa(datasets.GeneratorBasedBuilder):
"""A New Benchmark for Selection-based Question Answering."""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
BUILDER_CONFIG_CLASS = SelqaConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
SelqaConfig(
name="answer_selection_analysis",
mode="analysis",
type_="answer_selection",
version=VERSION,
description="This part covers answer selection analysis",
),
SelqaConfig(
name="answer_selection_experiments",
mode="experiments",
type_="answer_selection",
version=VERSION,
description="This part covers answer selection experiments",
),
SelqaConfig(
name="answer_triggering_analysis",
mode="analysis",
type_="answer_triggering",
version=VERSION,
description="This part covers answer triggering analysis",
),
SelqaConfig(
name="answer_triggering_experiments",
mode="experiments",
type_="answer_triggering",
version=VERSION,
description="This part covers answer triggering experiments",
),
]
DEFAULT_CONFIG_NAME = "answer_selection_analysis" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
if (
self.config.mode == "experiments"
): # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"question": datasets.Value("string"),
"candidate": datasets.Value("string"),
"label": datasets.ClassLabel(names=["0", "1"]),
}
)
else:
if self.config.type_ == "answer_selection":
features = datasets.Features(
{
"section": datasets.Value("string"),
"question": datasets.Value("string"),
"article": datasets.Value("string"),
"is_paraphrase": datasets.Value("bool"),
"topic": datasets.ClassLabel(
names=[
"MUSIC",
"TV",
"TRAVEL",
"ART",
"SPORT",
"COUNTRY",
"MOVIES",
"HISTORICAL EVENTS",
"SCIENCE",
"FOOD",
]
),
"answers": datasets.Sequence(datasets.Value("int32")),
"candidates": datasets.Sequence(datasets.Value("string")),
"q_types": datasets.Sequence(
datasets.ClassLabel(names=["what", "why", "when", "who", "where", "how", ""])
),
}
)
else:
features = datasets.Features(
{
"section": datasets.Value("string"),
"question": datasets.Value("string"),
"article": datasets.Value("string"),
"is_paraphrase": datasets.Value("bool"),
"topic": datasets.ClassLabel(
names=[
"MUSIC",
"TV",
"TRAVEL",
"ART",
"SPORT",
"COUNTRY",
"MOVIES",
"HISTORICAL EVENTS",
"SCIENCE",
"FOOD",
]
),
"q_types": datasets.Sequence(
datasets.ClassLabel(names=["what", "why", "when", "who", "where", "how", ""])
),
"candidate_list": datasets.Sequence(
{
"article": datasets.Value("string"),
"section": datasets.Value("string"),
"candidates": datasets.Sequence(datasets.Value("string")),
"answers": datasets.Sequence(datasets.Value("int32")),
}
),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = {
"train": f"https://raw.githubusercontent.com/emorynlp/selqa/master/{types[self.config.type_]}/selqa-{types[self.config.type_]}-train.{modes[self.config.mode]}",
"dev": f"https://raw.githubusercontent.com/emorynlp/selqa/master/{types[self.config.type_]}/selqa-{types[self.config.type_]}-dev.{modes[self.config.mode]}",
"test": f"https://raw.githubusercontent.com/emorynlp/selqa/master/{types[self.config.type_]}/selqa-{types[self.config.type_]}-test.{modes[self.config.mode]}",
}
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": data_dir["test"], "split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["dev"],
"split": "dev",
},
),
]
def _generate_examples(self, filepath, split):
"""Yields examples."""
# TODO: This method will receive as arguments the `gen_kwargs` defined in the previous `_split_generators` method.
# It is in charge of opening the given file and yielding (key, example) tuples from the dataset
# The key is not important, it's more here for legacy reason (legacy from tfds)
with open(filepath, encoding="utf-8") as f:
if self.config.mode == "experiments":
csv_reader = csv.DictReader(
f, delimiter="\t", quoting=csv.QUOTE_NONE, fieldnames=["question", "candidate", "label"]
)
for id_, row in enumerate(csv_reader):
yield id_, row
else:
if self.config.type_ == "answer_selection":
for row in f:
data = json.loads(row)
for id_, item in enumerate(data):
yield id_, {
"section": item["section"],
"question": item["question"],
"article": item["article"],
"is_paraphrase": item["is_paraphrase"],
"topic": item["topic"],
"answers": item["answers"],
"candidates": item["candidates"],
"q_types": item["q_types"],
}
else:
for row in f:
data = json.loads(row)
for id_, item in enumerate(data):
candidate_list = []
for entity in item["candidate_list"]:
candidate_list.append(
{
"article": entity["article"],
"section": entity["section"],
"answers": entity["answers"],
"candidates": entity["candidates"],
}
)
yield id_, {
"section": item["section"],
"question": item["question"],
"article": item["article"],
"is_paraphrase": item["is_paraphrase"],
"topic": item["topic"],
"q_types": item["q_types"],
"candidate_list": candidate_list,
}