albertvillanova HF staff commited on
Commit
76f94b0
1 Parent(s): 53695c2

Convert dataset to Parquet (#2)

Browse files

- Convert dataset to Parquet (e84b36c517c037ec6ac254aeebeaf4fba911c093)
- Delete loading script (22d221533ba783824e8b492b16eb0422b3480d0d)

Files changed (3) hide show
  1. README.md +8 -4
  2. data/train-00000-of-00001.parquet +3 -0
  3. oclar.py +0 -98
README.md CHANGED
@@ -19,7 +19,6 @@ task_ids:
19
  - text-scoring
20
  - sentiment-classification
21
  - sentiment-scoring
22
- paperswithcode_id: null
23
  pretty_name: OCLAR
24
  dataset_info:
25
  features:
@@ -31,10 +30,15 @@ dataset_info:
31
  dtype: int8
32
  splits:
33
  - name: train
34
- num_bytes: 398204
35
  num_examples: 3916
36
- download_size: 382976
37
- dataset_size: 398204
 
 
 
 
 
38
  ---
39
 
40
  # Dataset Card for OCLAR
 
19
  - text-scoring
20
  - sentiment-classification
21
  - sentiment-scoring
 
22
  pretty_name: OCLAR
23
  dataset_info:
24
  features:
 
30
  dtype: int8
31
  splits:
32
  - name: train
33
+ num_bytes: 398196
34
  num_examples: 3916
35
+ download_size: 180384
36
+ dataset_size: 398196
37
+ configs:
38
+ - config_name: default
39
+ data_files:
40
+ - split: train
41
+ path: data/train-*
42
  ---
43
 
44
  # Dataset Card for OCLAR
data/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f32bb34a4de69303c6410e9484dd5122b91e2a271d92d44061860f7e9802ce7
3
+ size 180384
oclar.py DELETED
@@ -1,98 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """Opinion Corpus for Lebanese Arabic Reviews (OCLAR) Data Set"""
16
-
17
-
18
- import csv
19
-
20
- import datasets
21
-
22
-
23
- _CITATION = """
24
- @misc{Dua:2019 ,
25
- author = "Dua, Dheeru and Graff, Casey",
26
- year = "2017",
27
- title = "{UCI} Machine Learning Repository",
28
- url = "http://archive.ics.uci.edu/ml",
29
- institution = "University of California, Irvine, School of Information and Computer Sciences" }
30
-
31
- @InProceedings{AlOmari2019oclar,
32
- title = {Sentiment Classifier: Logistic Regression for Arabic Services Reviews in Lebanon},
33
- authors={Al Omari, M., Al-Hajj, M., Hammami, N., & Sabra, A.},
34
- year={2019}
35
- }
36
- """
37
-
38
- _DESCRIPTION = """\
39
- The researchers of OCLAR Marwan et al. (2019), they gathered Arabic costumer reviews from Google reviewsa and Zomato
40
- website (https://www.zomato.com/lebanon) on wide scope of domain, including restaurants, hotels, hospitals, local shops,
41
- etc.The corpus finally contains 3916 reviews in 5-rating scale. For this research purpose, the positive class considers
42
- rating stars from 5 to 3 of 3465 reviews, and the negative class is represented from values of 1 and 2 of about
43
- 451 texts.
44
- """
45
-
46
- _HOMEPAGE = "http://archive.ics.uci.edu/ml/datasets/Opinion+Corpus+for+Lebanese+Arabic+Reviews+%28OCLAR%29#"
47
-
48
- # TODO: Add the licence for the dataset here if you can find it
49
- _LICENSE = ""
50
-
51
- _URL = "http://archive.ics.uci.edu/ml/machine-learning-databases/00499/OCLAR%20-%20Opinion%20Corpus%20for%20Lebanese%20Arabic%20Reviews.csv"
52
-
53
-
54
- class Oclar(datasets.GeneratorBasedBuilder):
55
- """TOpinion Corpus for Lebanese Arabic Reviews (OCLAR) corpus is utilizable for Arabic sentiment classification on
56
- services reviews, including hotels, restaurants, shops, and others.
57
- """
58
-
59
- VERSION = datasets.Version("1.1.0")
60
-
61
- def _info(self):
62
- return datasets.DatasetInfo(
63
- description=_DESCRIPTION,
64
- features=datasets.Features(
65
- {
66
- "pagename": datasets.Value("string"),
67
- "review": datasets.Value("string"),
68
- "rating": datasets.Value("int8"),
69
- }
70
- ),
71
- supervised_keys=None,
72
- homepage=_HOMEPAGE,
73
- license=_LICENSE,
74
- citation=_CITATION,
75
- )
76
-
77
- def _split_generators(self, dl_manager):
78
- """Returns SplitGenerators."""
79
- data_path = dl_manager.download_and_extract(_URL)
80
- return [
81
- datasets.SplitGenerator(
82
- name=datasets.Split.TRAIN,
83
- gen_kwargs={
84
- "filepath": data_path,
85
- "split": "train",
86
- },
87
- )
88
- ]
89
-
90
- def _generate_examples(self, filepath, split):
91
- """Yields examples."""
92
- with open(filepath, encoding="utf-8") as csv_file:
93
- csv_reader = csv.reader(csv_file, delimiter=",", skipinitialspace=True)
94
- next(csv_reader, None) # skipping headers
95
- for id_, row in enumerate(csv_reader):
96
- pagename, review, rating = row
97
- rating = int(rating)
98
- yield id_, {"pagename": pagename, "review": review, "rating": rating}