Datasets:
Commit
•
2f5bad6
1
Parent(s):
a98b82a
Delete loading script
Browse files- glucose.py +0 -160
glucose.py
DELETED
@@ -1,160 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""GLUCOSE: GeneraLized and COntextualized Story Explanations, is a novel conceptual framework and dataset for commonsense reasoning. Given a short story and a sentence X in the story, GLUCOSE captures ten dimensions of causal explanation related to X. These dimensions, inspired by human cognitive psychology, cover often-implicit causes and effects of X, including events, location, possession, and other attributes."""
|
16 |
-
|
17 |
-
|
18 |
-
import csv
|
19 |
-
import os
|
20 |
-
|
21 |
-
import datasets
|
22 |
-
|
23 |
-
|
24 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
25 |
-
_CITATION = """\
|
26 |
-
@inproceedings{mostafazadeh2020glucose,
|
27 |
-
title={GLUCOSE: GeneraLized and COntextualized Story Explanations},
|
28 |
-
author={Nasrin Mostafazadeh and Aditya Kalyanpur and Lori Moon and David Buchanan and Lauren Berkowitz and Or Biran and Jennifer Chu-Carroll},
|
29 |
-
year={2020},
|
30 |
-
booktitle={The Conference on Empirical Methods in Natural Language Processing},
|
31 |
-
publisher={Association for Computational Linguistics}
|
32 |
-
}
|
33 |
-
"""
|
34 |
-
|
35 |
-
# You can copy an official description
|
36 |
-
_DESCRIPTION = """\
|
37 |
-
When humans read or listen, they make implicit commonsense inferences that frame their understanding of what happened and why. As a step toward AI systems that can build similar mental models, we introduce GLUCOSE, a large-scale dataset of implicit commonsense causal knowledge, encoded as causal mini-theories about the world, each grounded in a narrative context.
|
38 |
-
"""
|
39 |
-
|
40 |
-
_HOMEPAGE = "https://github.com/ElementalCognition/glucose"
|
41 |
-
|
42 |
-
_LICENSE = "Creative Commons Attribution-NonCommercial 4.0 International Public License"
|
43 |
-
|
44 |
-
_URLs = {
|
45 |
-
"glucose": {
|
46 |
-
"test": "https://raw.githubusercontent.com/ElementalCognition/glucose/master/test/test_set_no_answers.csv",
|
47 |
-
"train": "https://github.com/TevenLeScao/glucose/blob/master/GLUCOSE_training_data.zip?raw=true",
|
48 |
-
}
|
49 |
-
}
|
50 |
-
|
51 |
-
|
52 |
-
class Glucose(datasets.GeneratorBasedBuilder):
|
53 |
-
"""GLUCOSE: GeneraLized and COntextualized Story Explanations, is a novel conceptual framework and dataset for commonsense reasoning."""
|
54 |
-
|
55 |
-
VERSION = datasets.Version("1.1.0")
|
56 |
-
BUILDER_CONFIGS = [
|
57 |
-
datasets.BuilderConfig(name="glucose", description="Main dataset"),
|
58 |
-
]
|
59 |
-
|
60 |
-
def _info(self):
|
61 |
-
feature_dict = {
|
62 |
-
"experiment_id": datasets.Value("string"),
|
63 |
-
"story_id": datasets.Value("string"),
|
64 |
-
# The train set contains only one ID in numeric form
|
65 |
-
"worker_id": datasets.Value("int64"),
|
66 |
-
# The test set contains several IDs in string form
|
67 |
-
"worker_ids": datasets.Value("string"),
|
68 |
-
"submission_time_normalized": datasets.Value("string"),
|
69 |
-
"worker_quality_assessment": datasets.Value("int64"),
|
70 |
-
"selected_sentence_index": datasets.Value("int64"),
|
71 |
-
"story": datasets.Value("string"),
|
72 |
-
"selected_sentence": datasets.Value("string"),
|
73 |
-
"number_filled_in": datasets.Value("int64"),
|
74 |
-
}
|
75 |
-
for i in range(1, 11):
|
76 |
-
feature_dict[f"{i}_specificNL"] = datasets.Value("string")
|
77 |
-
feature_dict[f"{i}_specificStructured"] = datasets.Value("string")
|
78 |
-
feature_dict[f"{i}_generalNL"] = datasets.Value("string")
|
79 |
-
feature_dict[f"{i}_generalStructured"] = datasets.Value("string")
|
80 |
-
features = datasets.Features(feature_dict)
|
81 |
-
return datasets.DatasetInfo(
|
82 |
-
description=_DESCRIPTION,
|
83 |
-
features=features,
|
84 |
-
supervised_keys=None,
|
85 |
-
homepage=_HOMEPAGE,
|
86 |
-
license=_LICENSE,
|
87 |
-
citation=_CITATION,
|
88 |
-
)
|
89 |
-
|
90 |
-
def _split_generators(self, dl_manager):
|
91 |
-
"""Returns SplitGenerators."""
|
92 |
-
train_url = _URLs[self.config.name]["train"]
|
93 |
-
test_url = _URLs[self.config.name]["test"]
|
94 |
-
train_data = dl_manager.download_and_extract(train_url)
|
95 |
-
test_data = dl_manager.download_and_extract(test_url)
|
96 |
-
return [
|
97 |
-
datasets.SplitGenerator(
|
98 |
-
name=datasets.Split.TRAIN,
|
99 |
-
gen_kwargs={
|
100 |
-
"filepath": os.path.join(train_data, "GLUCOSE_training_data_final.csv"),
|
101 |
-
"split": "train",
|
102 |
-
},
|
103 |
-
),
|
104 |
-
datasets.SplitGenerator(
|
105 |
-
name=datasets.Split.TEST,
|
106 |
-
gen_kwargs={"filepath": test_data, "split": "test"},
|
107 |
-
),
|
108 |
-
]
|
109 |
-
|
110 |
-
def _generate_examples(self, filepath, split):
|
111 |
-
with open(filepath, encoding="utf8") as f:
|
112 |
-
data = csv.reader(f)
|
113 |
-
next(data)
|
114 |
-
for id_, row in enumerate(data):
|
115 |
-
if split == "train":
|
116 |
-
yield id_, train_dict_from_row(row)
|
117 |
-
else:
|
118 |
-
yield id_, test_dict_from_row(row)
|
119 |
-
|
120 |
-
|
121 |
-
def train_dict_from_row(row):
|
122 |
-
return_dict = {
|
123 |
-
"experiment_id": row[0],
|
124 |
-
"story_id": row[1],
|
125 |
-
"worker_id": row[2],
|
126 |
-
"worker_ids": "",
|
127 |
-
"submission_time_normalized": row[3],
|
128 |
-
"worker_quality_assessment": row[4],
|
129 |
-
"selected_sentence_index": row[5],
|
130 |
-
"story": row[6],
|
131 |
-
"selected_sentence": row[7],
|
132 |
-
"number_filled_in": row[48],
|
133 |
-
}
|
134 |
-
for i in range(1, 11):
|
135 |
-
return_dict[f"{i}_specificNL"] = row[4 * i + 4]
|
136 |
-
return_dict[f"{i}_specificStructured"] = row[4 * i + 5]
|
137 |
-
return_dict[f"{i}_generalNL"] = row[4 * i + 6]
|
138 |
-
return_dict[f"{i}_generalStructured"] = row[4 * i + 7]
|
139 |
-
return return_dict
|
140 |
-
|
141 |
-
|
142 |
-
def test_dict_from_row(row):
|
143 |
-
return_dict = {
|
144 |
-
"experiment_id": "",
|
145 |
-
"story_id": row[0],
|
146 |
-
"worker_id": -1,
|
147 |
-
"worker_ids": row[3],
|
148 |
-
"submission_time_normalized": "",
|
149 |
-
"worker_quality_assessment": -1,
|
150 |
-
"selected_sentence_index": -1,
|
151 |
-
"story": row[1],
|
152 |
-
"selected_sentence": row[2],
|
153 |
-
"number_filled_in": -1,
|
154 |
-
}
|
155 |
-
for i in range(1, 11):
|
156 |
-
return_dict[f"{i}_specificNL"] = row[2 * i + 2]
|
157 |
-
return_dict[f"{i}_generalNL"] = row[2 * i + 3]
|
158 |
-
return_dict[f"{i}_specificStructured"] = ""
|
159 |
-
return_dict[f"{i}_generalStructured"] = ""
|
160 |
-
return return_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|