Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
glucose / glucose.py
system's picture
system HF staff
Update files from the datasets library (from 1.6.1)
122cc3a
raw
history blame
6.69 kB
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""GLUCOSE: GeneraLized and COntextualized Story Explanations, is a novel conceptual framework and dataset for commonsense reasoning. Given a short story and a sentence X in the story, GLUCOSE captures ten dimensions of causal explanation related to X. These dimensions, inspired by human cognitive psychology, cover often-implicit causes and effects of X, including events, location, possession, and other attributes."""
import csv
import os
import datasets
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@inproceedings{mostafazadeh2020glucose,
title={GLUCOSE: GeneraLized and COntextualized Story Explanations},
author={Nasrin Mostafazadeh and Aditya Kalyanpur and Lori Moon and David Buchanan and Lauren Berkowitz and Or Biran and Jennifer Chu-Carroll},
year={2020},
booktitle={The Conference on Empirical Methods in Natural Language Processing},
publisher={Association for Computational Linguistics}
}
"""
# You can copy an official description
_DESCRIPTION = """\
When humans read or listen, they make implicit commonsense inferences that frame their understanding of what happened and why. As a step toward AI systems that can build similar mental models, we introduce GLUCOSE, a large-scale dataset of implicit commonsense causal knowledge, encoded as causal mini-theories about the world, each grounded in a narrative context.
"""
_HOMEPAGE = "https://github.com/ElementalCognition/glucose"
_LICENSE = "Creative Commons Attribution-NonCommercial 4.0 International Public License"
_URLs = {
"glucose": {
"test": "https://raw.githubusercontent.com/ElementalCognition/glucose/master/test/test_set_no_answers.csv",
"train": "https://github.com/TevenLeScao/glucose/blob/master/GLUCOSE_training_data.zip?raw=true",
}
}
class Glucose(datasets.GeneratorBasedBuilder):
"""GLUCOSE: GeneraLized and COntextualized Story Explanations, is a novel conceptual framework and dataset for commonsense reasoning."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="glucose", description="Main dataset"),
]
def _info(self):
feature_dict = {
"experiment_id": datasets.Value("string"),
"story_id": datasets.Value("string"),
# The train set contains only one ID in numeric form
"worker_id": datasets.Value("int64"),
# The test set contains several IDs in string form
"worker_ids": datasets.Value("string"),
"submission_time_normalized": datasets.Value("string"),
"worker_quality_assessment": datasets.Value("int64"),
"selected_sentence_index": datasets.Value("int64"),
"story": datasets.Value("string"),
"selected_sentence": datasets.Value("string"),
"number_filled_in": datasets.Value("int64"),
}
for i in range(1, 11):
feature_dict[f"{i}_specificNL"] = datasets.Value("string")
feature_dict[f"{i}_specificStructured"] = datasets.Value("string")
feature_dict[f"{i}_generalNL"] = datasets.Value("string")
feature_dict[f"{i}_generalStructured"] = datasets.Value("string")
features = datasets.Features(feature_dict)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
train_url = _URLs[self.config.name]["train"]
test_url = _URLs[self.config.name]["test"]
train_data = dl_manager.download_and_extract(train_url)
test_data = dl_manager.download_and_extract(test_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(train_data, "GLUCOSE_training_data_final.csv"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": test_data, "split": "test"},
),
]
def _generate_examples(self, filepath, split):
with open(filepath, encoding="utf8") as f:
data = csv.reader(f)
next(data)
for id_, row in enumerate(data):
if split == "train":
yield id_, train_dict_from_row(row)
else:
yield id_, test_dict_from_row(row)
def train_dict_from_row(row):
return_dict = {
"experiment_id": row[0],
"story_id": row[1],
"worker_id": row[2],
"worker_ids": "",
"submission_time_normalized": row[3],
"worker_quality_assessment": row[4],
"selected_sentence_index": row[5],
"story": row[6],
"selected_sentence": row[7],
"number_filled_in": row[48],
}
for i in range(1, 11):
return_dict[f"{i}_specificNL"] = row[4 * i + 4]
return_dict[f"{i}_specificStructured"] = row[4 * i + 5]
return_dict[f"{i}_generalNL"] = row[4 * i + 6]
return_dict[f"{i}_generalStructured"] = row[4 * i + 7]
return return_dict
def test_dict_from_row(row):
return_dict = {
"experiment_id": "",
"story_id": row[0],
"worker_id": -1,
"worker_ids": row[3],
"submission_time_normalized": "",
"worker_quality_assessment": -1,
"selected_sentence_index": -1,
"story": row[1],
"selected_sentence": row[2],
"number_filled_in": -1,
}
for i in range(1, 11):
return_dict[f"{i}_specificNL"] = row[2 * i + 2]
return_dict[f"{i}_generalNL"] = row[2 * i + 3]
return_dict[f"{i}_specificStructured"] = ""
return_dict[f"{i}_generalStructured"] = ""
return return_dict