|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""GLUCOSE: GeneraLized and COntextualized Story Explanations, is a novel conceptual framework and dataset for commonsense reasoning. Given a short story and a sentence X in the story, GLUCOSE captures ten dimensions of causal explanation related to X. These dimensions, inspired by human cognitive psychology, cover often-implicit causes and effects of X, including events, location, possession, and other attributes.""" |
|
|
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{mostafazadeh2020glucose, |
|
title={GLUCOSE: GeneraLized and COntextualized Story Explanations}, |
|
author={Nasrin Mostafazadeh and Aditya Kalyanpur and Lori Moon and David Buchanan and Lauren Berkowitz and Or Biran and Jennifer Chu-Carroll}, |
|
year={2020}, |
|
booktitle={The Conference on Empirical Methods in Natural Language Processing}, |
|
publisher={Association for Computational Linguistics} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
When humans read or listen, they make implicit commonsense inferences that frame their understanding of what happened and why. As a step toward AI systems that can build similar mental models, we introduce GLUCOSE, a large-scale dataset of implicit commonsense causal knowledge, encoded as causal mini-theories about the world, each grounded in a narrative context. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/ElementalCognition/glucose" |
|
|
|
_LICENSE = "Creative Commons Attribution-NonCommercial 4.0 International Public License" |
|
|
|
_URLs = { |
|
"glucose": { |
|
"test": "https://raw.githubusercontent.com/ElementalCognition/glucose/master/test/test_set_no_answers.csv", |
|
"train": "https://github.com/TevenLeScao/glucose/blob/master/GLUCOSE_training_data.zip?raw=true", |
|
} |
|
} |
|
|
|
|
|
class Glucose(datasets.GeneratorBasedBuilder): |
|
"""GLUCOSE: GeneraLized and COntextualized Story Explanations, is a novel conceptual framework and dataset for commonsense reasoning.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="glucose", description="Main dataset"), |
|
] |
|
|
|
def _info(self): |
|
feature_dict = { |
|
"experiment_id": datasets.Value("string"), |
|
"story_id": datasets.Value("string"), |
|
|
|
"worker_id": datasets.Value("int64"), |
|
|
|
"worker_ids": datasets.Value("string"), |
|
"submission_time_normalized": datasets.Value("string"), |
|
"worker_quality_assessment": datasets.Value("int64"), |
|
"selected_sentence_index": datasets.Value("int64"), |
|
"story": datasets.Value("string"), |
|
"selected_sentence": datasets.Value("string"), |
|
"number_filled_in": datasets.Value("int64"), |
|
} |
|
for i in range(1, 11): |
|
feature_dict[f"{i}_specificNL"] = datasets.Value("string") |
|
feature_dict[f"{i}_specificStructured"] = datasets.Value("string") |
|
feature_dict[f"{i}_generalNL"] = datasets.Value("string") |
|
feature_dict[f"{i}_generalStructured"] = datasets.Value("string") |
|
features = datasets.Features(feature_dict) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
train_url = _URLs[self.config.name]["train"] |
|
test_url = _URLs[self.config.name]["test"] |
|
train_data = dl_manager.download_and_extract(train_url) |
|
test_data = dl_manager.download_and_extract(test_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(train_data, "GLUCOSE_training_data_final.csv"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": test_data, "split": "test"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
with open(filepath, encoding="utf8") as f: |
|
data = csv.reader(f) |
|
next(data) |
|
for id_, row in enumerate(data): |
|
if split == "train": |
|
yield id_, train_dict_from_row(row) |
|
else: |
|
yield id_, test_dict_from_row(row) |
|
|
|
|
|
def train_dict_from_row(row): |
|
return_dict = { |
|
"experiment_id": row[0], |
|
"story_id": row[1], |
|
"worker_id": row[2], |
|
"worker_ids": "", |
|
"submission_time_normalized": row[3], |
|
"worker_quality_assessment": row[4], |
|
"selected_sentence_index": row[5], |
|
"story": row[6], |
|
"selected_sentence": row[7], |
|
"number_filled_in": row[48], |
|
} |
|
for i in range(1, 11): |
|
return_dict[f"{i}_specificNL"] = row[4 * i + 4] |
|
return_dict[f"{i}_specificStructured"] = row[4 * i + 5] |
|
return_dict[f"{i}_generalNL"] = row[4 * i + 6] |
|
return_dict[f"{i}_generalStructured"] = row[4 * i + 7] |
|
return return_dict |
|
|
|
|
|
def test_dict_from_row(row): |
|
return_dict = { |
|
"experiment_id": "", |
|
"story_id": row[0], |
|
"worker_id": -1, |
|
"worker_ids": row[3], |
|
"submission_time_normalized": "", |
|
"worker_quality_assessment": -1, |
|
"selected_sentence_index": -1, |
|
"story": row[1], |
|
"selected_sentence": row[2], |
|
"number_filled_in": -1, |
|
} |
|
for i in range(1, 11): |
|
return_dict[f"{i}_specificNL"] = row[2 * i + 2] |
|
return_dict[f"{i}_generalNL"] = row[2 * i + 3] |
|
return_dict[f"{i}_specificStructured"] = "" |
|
return_dict[f"{i}_generalStructured"] = "" |
|
return return_dict |
|
|