Commit
•
a18eee6
1
Parent(s):
66cf90a
Delete loading script
Browse files- generics_kb.py +0 -189
generics_kb.py
DELETED
@@ -1,189 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""Generics KB: A Knowledge Base of Generic Statements"""
|
16 |
-
|
17 |
-
|
18 |
-
import ast
|
19 |
-
import csv
|
20 |
-
|
21 |
-
import datasets
|
22 |
-
|
23 |
-
|
24 |
-
# TODO: Add BibTeX citation
|
25 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
26 |
-
_CITATION = """\
|
27 |
-
@InProceedings{huggingface:dataset,
|
28 |
-
title = {GenericsKB: A Knowledge Base of Generic Statements},
|
29 |
-
authors={Sumithra Bhakthavatsalam, Chloe Anastasiades, Peter Clark},
|
30 |
-
year={2020},
|
31 |
-
publisher = {Allen Institute for AI},
|
32 |
-
}
|
33 |
-
"""
|
34 |
-
|
35 |
-
_DESCRIPTION = """\
|
36 |
-
The GenericsKB contains 3.4M+ generic sentences about the world, i.e., sentences expressing general truths such as "Dogs bark," and "Trees remove carbon dioxide from the atmosphere." Generics are potentially useful as a knowledge source for AI systems requiring general world knowledge. The GenericsKB is the first large-scale resource containing naturally occurring generic sentences (as opposed to extracted or crowdsourced triples), and is rich in high-quality, general, semantically complete statements. Generics were primarily extracted from three large text sources, namely the Waterloo Corpus, selected parts of Simple Wikipedia, and the ARC Corpus. A filtered, high-quality subset is also available in GenericsKB-Best, containing 1,020,868 sentences. We recommend you start with GenericsKB-Best.
|
37 |
-
"""
|
38 |
-
|
39 |
-
_HOMEPAGE = "https://allenai.org/data/genericskb"
|
40 |
-
|
41 |
-
_LICENSE = "cc-by-4.0"
|
42 |
-
|
43 |
-
_BASE_URL = "data/{0}"
|
44 |
-
|
45 |
-
_URLS = {
|
46 |
-
"generics_kb_best": _BASE_URL.format("GenericsKB-Best.tsv.gz"),
|
47 |
-
"generics_kb": _BASE_URL.format("GenericsKB.tsv.gz"),
|
48 |
-
"generics_kb_simplewiki": _BASE_URL.format("GenericsKB-SimpleWiki-With-Context.jsonl.gz"),
|
49 |
-
"generics_kb_waterloo": _BASE_URL.format("GenericsKB-Waterloo-With-Context.jsonl.gz"),
|
50 |
-
}
|
51 |
-
|
52 |
-
|
53 |
-
class GenericsKb(datasets.GeneratorBasedBuilder):
|
54 |
-
"""The GenericsKB is the first large-scale resource containing naturally occurring generic sentences, and is rich in high-quality, general, semantically complete statements."""
|
55 |
-
|
56 |
-
VERSION = datasets.Version("1.0.0")
|
57 |
-
|
58 |
-
BUILDER_CONFIGS = [
|
59 |
-
datasets.BuilderConfig(
|
60 |
-
name="generics_kb_best",
|
61 |
-
version=VERSION,
|
62 |
-
description="This is the default and recommended config. Comprises of GENERICSKB generics with a score > 0.234 ",
|
63 |
-
),
|
64 |
-
datasets.BuilderConfig(
|
65 |
-
name="generics_kb", version=VERSION, description="This GENERICSKB that contains 3,433,000 sentences."
|
66 |
-
),
|
67 |
-
datasets.BuilderConfig(
|
68 |
-
name="generics_kb_simplewiki",
|
69 |
-
version=VERSION,
|
70 |
-
description="SimpleWikipedia is a filtered scrape of SimpleWikipedia pages (simple.wikipedia.org)",
|
71 |
-
),
|
72 |
-
datasets.BuilderConfig(
|
73 |
-
name="generics_kb_waterloo",
|
74 |
-
version=VERSION,
|
75 |
-
description="The Waterloo corpus is 280GB of English plain text, gathered by Charles Clarke (Univ. Waterloo) using a webcrawler in 2001 from .edu domains.",
|
76 |
-
),
|
77 |
-
]
|
78 |
-
|
79 |
-
DEFAULT_CONFIG_NAME = "generics_kb_best"
|
80 |
-
|
81 |
-
def _info(self):
|
82 |
-
if self.config.name == "generics_kb_waterloo" or self.config.name == "generics_kb_simplewiki":
|
83 |
-
featuredict = {
|
84 |
-
"source_name": datasets.Value("string"),
|
85 |
-
"sentence": datasets.Value("string"),
|
86 |
-
"sentences_before": datasets.Sequence(datasets.Value("string")),
|
87 |
-
"sentences_after": datasets.Sequence(datasets.Value("string")),
|
88 |
-
"concept_name": datasets.Value("string"),
|
89 |
-
"quantifiers": datasets.Sequence(datasets.Value("string")),
|
90 |
-
"id": datasets.Value("string"),
|
91 |
-
"bert_score": datasets.Value("float64"),
|
92 |
-
}
|
93 |
-
if self.config.name == "generics_kb_simplewiki":
|
94 |
-
featuredict["headings"] = datasets.Sequence(datasets.Value("string"))
|
95 |
-
featuredict["categories"] = datasets.Sequence(datasets.Value("string"))
|
96 |
-
|
97 |
-
features = datasets.Features(featuredict)
|
98 |
-
|
99 |
-
else:
|
100 |
-
features = datasets.Features(
|
101 |
-
{
|
102 |
-
"source": datasets.Value("string"),
|
103 |
-
"term": datasets.Value("string"),
|
104 |
-
"quantifier_frequency": datasets.Value("string"),
|
105 |
-
"quantifier_number": datasets.Value("string"),
|
106 |
-
"generic_sentence": datasets.Value("string"),
|
107 |
-
"score": datasets.Value("float64"),
|
108 |
-
}
|
109 |
-
)
|
110 |
-
|
111 |
-
return datasets.DatasetInfo(
|
112 |
-
# This is the description that will appear on the datasets page.
|
113 |
-
description=_DESCRIPTION,
|
114 |
-
# This defines the different columns of the dataset and their types
|
115 |
-
features=features, # Here we define them above because they are different between the two configurations
|
116 |
-
# If there's a common (input, target) tuple from the features,
|
117 |
-
# specify them here. They'll be used if as_supervised=True in
|
118 |
-
# builder.as_dataset.
|
119 |
-
supervised_keys=None,
|
120 |
-
# Homepage of the dataset for documentation
|
121 |
-
homepage=_HOMEPAGE,
|
122 |
-
# License for the dataset if available
|
123 |
-
license=_LICENSE,
|
124 |
-
# Citation for the dataset
|
125 |
-
citation=_CITATION,
|
126 |
-
)
|
127 |
-
|
128 |
-
def _split_generators(self, dl_manager):
|
129 |
-
filepath = dl_manager.download_and_extract(_URLS[self.config.name])
|
130 |
-
|
131 |
-
return [
|
132 |
-
datasets.SplitGenerator(
|
133 |
-
name=datasets.Split.TRAIN,
|
134 |
-
# These kwargs will be passed to _generate_examples
|
135 |
-
gen_kwargs={
|
136 |
-
"filepath": filepath,
|
137 |
-
},
|
138 |
-
),
|
139 |
-
]
|
140 |
-
|
141 |
-
def _generate_examples(self, filepath):
|
142 |
-
"""Yields examples."""
|
143 |
-
|
144 |
-
if self.config.name == "generics_kb_waterloo" or self.config.name == "generics_kb_simplewiki":
|
145 |
-
with open(filepath, encoding="utf-8") as f:
|
146 |
-
for id_, row in enumerate(f):
|
147 |
-
data = ast.literal_eval(row)
|
148 |
-
|
149 |
-
result = {
|
150 |
-
"source_name": data["source"]["name"],
|
151 |
-
"sentence": data["knowledge"]["sentence"],
|
152 |
-
"sentences_before": data["knowledge"]["context"]["sentences_before"],
|
153 |
-
"sentences_after": data["knowledge"]["context"]["sentences_after"],
|
154 |
-
"concept_name": data["knowledge"]["key_concepts"][0]["concept_name"],
|
155 |
-
"quantifiers": data["knowledge"]["key_concepts"][0]["quantifiers"],
|
156 |
-
"id": data["id"],
|
157 |
-
"bert_score": data["bert_score"],
|
158 |
-
}
|
159 |
-
if self.config.name == "generics_kb_simplewiki":
|
160 |
-
result["headings"] = data["knowledge"]["context"]["headings"]
|
161 |
-
result["categories"] = data["knowledge"]["context"]["categories"]
|
162 |
-
|
163 |
-
yield id_, result
|
164 |
-
else:
|
165 |
-
with open(filepath, encoding="utf-8") as f:
|
166 |
-
# Skip the header
|
167 |
-
next(f)
|
168 |
-
|
169 |
-
read_tsv = csv.reader(f, delimiter="\t")
|
170 |
-
|
171 |
-
for id_, row in enumerate(read_tsv):
|
172 |
-
quantifier = row[2]
|
173 |
-
quantifier_frequency = ""
|
174 |
-
quantifier_number = ""
|
175 |
-
|
176 |
-
if quantifier != "":
|
177 |
-
quantifier = ast.literal_eval(quantifier)
|
178 |
-
if "frequency" in quantifier.keys():
|
179 |
-
quantifier_frequency = quantifier["frequency"]
|
180 |
-
if "number" in quantifier.keys():
|
181 |
-
quantifier_number = quantifier["number"]
|
182 |
-
yield id_, {
|
183 |
-
"source": row[0],
|
184 |
-
"term": row[1],
|
185 |
-
"quantifier_frequency": quantifier_frequency,
|
186 |
-
"quantifier_number": quantifier_number,
|
187 |
-
"generic_sentence": row[3],
|
188 |
-
"score": row[4],
|
189 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|