albertvillanova HF staff commited on
Commit
480cf0f
1 Parent(s): a64a471

Convert dataset to Parquet

Browse files

Convert dataset to Parquet.

README.md CHANGED
@@ -49,10 +49,15 @@ dataset_info:
49
  '20': Time
50
  splits:
51
  - name: train
52
- num_bytes: 5095721
53
  num_examples: 258240
54
- download_size: 17063406
55
- dataset_size: 5095721
 
 
 
 
 
56
  ---
57
 
58
  # Dataset Card for CANER
 
49
  '20': Time
50
  splits:
51
  - name: train
52
+ num_bytes: 5095617
53
  num_examples: 258240
54
+ download_size: 1459014
55
+ dataset_size: 5095617
56
+ configs:
57
+ - config_name: default
58
+ data_files:
59
+ - split: train
60
+ path: data/train-*
61
  ---
62
 
63
  # Dataset Card for CANER
data/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68d710a709cefb398a3b44ac3d0629975fed8ba489747448c499c65baffc3de2
3
+ size 1459014
dataset_infos.json CHANGED
@@ -1 +1,60 @@
1
- {"default": {"description": "Classical Arabic Named Entity Recognition corpus as a new corpus of tagged data that can be useful for handling the issues in recognition of Arabic named entities.\n", "citation": "@article{article,\nauthor = {Salah, Ramzi and Zakaria, Lailatul},\nyear = {2018},\nmonth = {12},\npages = {},\ntitle = {BUILDING THE CLASSICAL ARABIC NAMED ENTITY RECOGNITION CORPUS (CANERCORPUS)},\nvolume = {96},\njournal = {Journal of Theoretical and Applied Information Technology}\n}\n", "homepage": "https://github.com/RamziSalah/Classical-Arabic-Named-Entity-Recognition-Corpus", "license": "", "features": {"token": {"dtype": "string", "id": null, "_type": "Value"}, "ner_tag": {"num_classes": 21, "names": ["Allah", "Book", "Clan", "Crime", "Date", "Day", "Hell", "Loc", "Meas", "Mon", "Month", "NatOb", "Number", "O", "Org", "Para", "Pers", "Prophet", "Rlig", "Sect", "Time"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "builder_name": "caner", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 5095721, "num_examples": 258240, "dataset_name": "caner"}}, "download_checksums": {"https://github.com/RamziSalah/Classical-Arabic-Named-Entity-Recognition-Corpus/archive/master.zip": {"num_bytes": 17063406, "checksum": "b4f6bbcc1074dfb9a6cf53fbbd5825a8eafbff842cd89ed20ab33f5b3ef6cddb"}}, "download_size": 17063406, "post_processing_size": null, "dataset_size": 5095721, "size_in_bytes": 22159127}}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "default": {
3
+ "description": "Classical Arabic Named Entity Recognition corpus as a new corpus of tagged data that can be useful for handling the issues in recognition of Arabic named entities.\n",
4
+ "citation": "@article{article,\nauthor = {Salah, Ramzi and Zakaria, Lailatul},\nyear = {2018},\nmonth = {12},\npages = {},\ntitle = {BUILDING THE CLASSICAL ARABIC NAMED ENTITY RECOGNITION CORPUS (CANERCORPUS)},\nvolume = {96},\njournal = {Journal of Theoretical and Applied Information Technology}\n}\n",
5
+ "homepage": "https://github.com/RamziSalah/Classical-Arabic-Named-Entity-Recognition-Corpus",
6
+ "license": "",
7
+ "features": {
8
+ "token": {
9
+ "dtype": "string",
10
+ "_type": "Value"
11
+ },
12
+ "ner_tag": {
13
+ "names": [
14
+ "Allah",
15
+ "Book",
16
+ "Clan",
17
+ "Crime",
18
+ "Date",
19
+ "Day",
20
+ "Hell",
21
+ "Loc",
22
+ "Meas",
23
+ "Mon",
24
+ "Month",
25
+ "NatOb",
26
+ "Number",
27
+ "O",
28
+ "Org",
29
+ "Para",
30
+ "Pers",
31
+ "Prophet",
32
+ "Rlig",
33
+ "Sect",
34
+ "Time"
35
+ ],
36
+ "_type": "ClassLabel"
37
+ }
38
+ },
39
+ "builder_name": "parquet",
40
+ "dataset_name": "caner",
41
+ "config_name": "default",
42
+ "version": {
43
+ "version_str": "1.1.0",
44
+ "major": 1,
45
+ "minor": 1,
46
+ "patch": 0
47
+ },
48
+ "splits": {
49
+ "train": {
50
+ "name": "train",
51
+ "num_bytes": 5095617,
52
+ "num_examples": 258240,
53
+ "dataset_name": null
54
+ }
55
+ },
56
+ "download_size": 1459014,
57
+ "dataset_size": 5095617,
58
+ "size_in_bytes": 6554631
59
+ }
60
+ }