lvwerra HF staff commited on
Commit
8552d70
1 Parent(s): ffb9e04

Create github_preprocessing.py

Browse files
Files changed (1) hide show
  1. github_preprocessing.py +143 -0
github_preprocessing.py ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gzip
2
+ import multiprocessing
3
+ import os
4
+ import shutil
5
+ import time
6
+ from argparse import Namespace
7
+ from collections import Counter
8
+ import numpy as np
9
+ from datasets import load_dataset, utils
10
+ import re
11
+ from huggingface_hub import Repository
12
+ from multiprocessing import Pool
13
+ from tqdm import tqdm
14
+
15
+ # Settings
16
+ config = {
17
+ "dataset_name": "./data/github",
18
+ "num_workers": 96,
19
+ "line_max": 1000,
20
+ "out_path": "./data/github-code",
21
+ "repo_name": "github-code",
22
+ "org": "lvwerra",
23
+ "shard_size": 1000 << 20}
24
+
25
+ args = Namespace(**config)
26
+
27
+ PATTERN = re.compile(r'\s+')
28
+
29
+
30
+ def get_hash(example):
31
+ """Get hash of content field."""
32
+ return {"hash": hash(re.sub(PATTERN, '', example["content"]))}
33
+
34
+
35
+ def line_stats(example):
36
+ """Calculates mean and max line length of file."""
37
+ line_lengths = [len(line) for line in example["content"].splitlines()]
38
+ return {"line_mean": np.mean(line_lengths), "line_max": max(line_lengths)}
39
+
40
+
41
+ def alpha_stats(example):
42
+ """Calculates mean and max line length of file."""
43
+ alpha_frac = np.mean([c.isalnum() for c in example["content"]])
44
+ return {"alpha_frac": alpha_frac}
45
+
46
+
47
+ def check_uniques(example, uniques):
48
+ """Check if current hash is still in set of unique hashes and remove if true."""
49
+ if example["hash"] in uniques:
50
+ uniques.remove(example["hash"])
51
+ return True
52
+ else:
53
+ return False
54
+
55
+
56
+ def is_autogenerated(example, scan_width=5):
57
+ """Check if file is autogenerated by looking for keywords in the first few lines of the file."""
58
+ keywords = ["auto-generated", "autogenerated", "automatically generated"]
59
+ lines = example["content"].splitlines()
60
+ for _, line in zip(range(scan_width), lines):
61
+ for keyword in keywords:
62
+ if keyword in line.lower():
63
+ return {"autogenerated": True}
64
+ else:
65
+ return {"autogenerated": False}
66
+
67
+
68
+ def preprocess(example):
69
+ """Chain all preprocessing steps into one function to not fill cache."""
70
+ results = dict()
71
+ results.update(get_hash(example))
72
+ results.update(line_stats(example))
73
+ return results
74
+
75
+
76
+ def filter(example, uniques, args):
77
+ """Filter dataset with heuristics."""
78
+ if not check_uniques(example, uniques):
79
+ return False
80
+ elif example["line_max"] > args.line_max:
81
+ return False
82
+ else:
83
+ return True
84
+
85
+ def save_shard(shard_tuple):
86
+ """Save shard"""
87
+ filename, shard = shard_tuple
88
+ shard.to_parquet(filename)
89
+
90
+ # Load dataset
91
+ t_start = time.time()
92
+ ds = load_dataset(args.dataset_name, split="train", chunksize=40<<20)
93
+ print(f"Time to load dataset: {time.time()-t_start:.2f}")
94
+
95
+ # Run preprocessing
96
+ t_start = time.time()
97
+ ds = ds.map(preprocess, num_proc=args.num_workers)
98
+ print(f"Time to preprocess dataset: {time.time()-t_start:.2f}")
99
+ print(ds)
100
+
101
+ # Deduplicate hashes
102
+ uniques = set(ds.unique("hash"))
103
+ frac = len(uniques) / len(ds)
104
+ print(f"Fraction of duplicates: {1-frac:.2%}")
105
+
106
+ # Deduplicate data and apply heuristics
107
+ t_start = time.time()
108
+ ds = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args})
109
+ ds = ds.remove_columns(["line_mean", "line_max", "copies", "hash"])
110
+ print(f"Time to filter dataset: {time.time()-t_start:.2f}")
111
+ print(f"Size of filtered dataset: {len(ds)}")
112
+
113
+
114
+ # Save dataset in repo
115
+ repo = Repository(
116
+ local_dir=args.out_path,
117
+ clone_from=args.org + "/" + args.repo_name,
118
+ repo_type="dataset",
119
+ private=True,
120
+ use_auth_token=True,
121
+ git_user="lvwerra",
122
+ git_email="leandro.vonwerra@gmail.com",
123
+ )
124
+
125
+ os.mkdir(args.out_path + "/data")
126
+
127
+ if ds._indices is not None:
128
+ dataset_nbytes = ds.data.nbytes * len(ds._indices) / len(ds.data)
129
+ else:
130
+ dataset_nbytes = ds.data.nbytes
131
+
132
+ num_shards = int(dataset_nbytes / args.shard_size) + 1
133
+ print(f"Number of shards: {num_shards}")
134
+
135
+ t_start = time.time()
136
+ shards = (ds.shard(num_shards=num_shards, index=i, contiguous=True) for i in range(num_shards))
137
+ filenames = (f"{args.out_path}/data/train-{index:05d}-of-{num_shards:05d}.parquet" for index in range(num_shards))
138
+
139
+ with Pool(16) as p:
140
+ list(tqdm(p.imap_unordered(save_shard, zip(filenames, shards), chunksize=4), total=num_shards))
141
+ print(f"Time to save dataset: {time.time()-t_start:.2f}")
142
+
143
+ # To push to hub run `git add` and `git push` inside dataset repo folder