fix
Browse files- Image/run_all_models.py +1 -0
- Image/utils/dataset_utils.py +6 -6
- Image/utils/train_utils.py +25 -9
Image/run_all_models.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
from pathlib import Path
|
|
|
1 |
+
#bug
|
2 |
import os
|
3 |
import subprocess
|
4 |
from pathlib import Path
|
Image/utils/dataset_utils.py
CHANGED
@@ -3,7 +3,7 @@ import torchvision
|
|
3 |
import torchvision.transforms as transforms
|
4 |
import os
|
5 |
|
6 |
-
def get_cifar10_dataloaders(batch_size=128, num_workers=2, local_dataset_path=None):
|
7 |
"""获取CIFAR10数据集的数据加载器
|
8 |
|
9 |
Args:
|
@@ -45,16 +45,16 @@ def get_cifar10_dataloaders(batch_size=128, num_workers=2, local_dataset_path=No
|
|
45 |
trainset = torchvision.datasets.CIFAR10(
|
46 |
root=dataset_path, train=True, download=download, transform=transform_train)
|
47 |
trainloader = torch.utils.data.DataLoader(
|
48 |
-
trainset, batch_size=batch_size, shuffle=
|
49 |
|
50 |
testset = torchvision.datasets.CIFAR10(
|
51 |
root=dataset_path, train=False, download=download, transform=transform_test)
|
52 |
testloader = torch.utils.data.DataLoader(
|
53 |
-
testset, batch_size=
|
54 |
|
55 |
return trainloader, testloader
|
56 |
|
57 |
-
def get_mnist_dataloaders(batch_size=128, num_workers=2, local_dataset_path=None):
|
58 |
"""获取MNIST数据集的数据加载器
|
59 |
|
60 |
Args:
|
@@ -100,11 +100,11 @@ def get_mnist_dataloaders(batch_size=128, num_workers=2, local_dataset_path=None
|
|
100 |
trainset = torchvision.datasets.MNIST(
|
101 |
root=dataset_path, train=True, download=download, transform=transform_train)
|
102 |
trainloader = torch.utils.data.DataLoader(
|
103 |
-
trainset, batch_size=batch_size, shuffle=
|
104 |
|
105 |
testset = torchvision.datasets.MNIST(
|
106 |
root=dataset_path, train=False, download=download, transform=transform_test)
|
107 |
testloader = torch.utils.data.DataLoader(
|
108 |
-
testset, batch_size=
|
109 |
|
110 |
return trainloader, testloader
|
|
|
3 |
import torchvision.transforms as transforms
|
4 |
import os
|
5 |
|
6 |
+
def get_cifar10_dataloaders(batch_size=128, num_workers=2, local_dataset_path=None,shuffle=True):
|
7 |
"""获取CIFAR10数据集的数据加载器
|
8 |
|
9 |
Args:
|
|
|
45 |
trainset = torchvision.datasets.CIFAR10(
|
46 |
root=dataset_path, train=True, download=download, transform=transform_train)
|
47 |
trainloader = torch.utils.data.DataLoader(
|
48 |
+
trainset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
|
49 |
|
50 |
testset = torchvision.datasets.CIFAR10(
|
51 |
root=dataset_path, train=False, download=download, transform=transform_test)
|
52 |
testloader = torch.utils.data.DataLoader(
|
53 |
+
testset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
|
54 |
|
55 |
return trainloader, testloader
|
56 |
|
57 |
+
def get_mnist_dataloaders(batch_size=128, num_workers=2, local_dataset_path=None,shuffle=True):
|
58 |
"""获取MNIST数据集的数据加载器
|
59 |
|
60 |
Args:
|
|
|
100 |
trainset = torchvision.datasets.MNIST(
|
101 |
root=dataset_path, train=True, download=download, transform=transform_train)
|
102 |
trainloader = torch.utils.data.DataLoader(
|
103 |
+
trainset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
|
104 |
|
105 |
testset = torchvision.datasets.MNIST(
|
106 |
root=dataset_path, train=False, download=download, transform=transform_test)
|
107 |
testloader = torch.utils.data.DataLoader(
|
108 |
+
testset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers)
|
109 |
|
110 |
return trainloader, testloader
|
Image/utils/train_utils.py
CHANGED
@@ -92,9 +92,10 @@ def collect_embeddings(model, dataloader, device):
|
|
92 |
inputs = inputs.to(device)
|
93 |
_ = model(inputs)
|
94 |
|
95 |
-
#
|
96 |
-
|
97 |
-
|
|
|
98 |
|
99 |
# 分析所有层的输出维度
|
100 |
for name, feat in activation.items():
|
@@ -102,9 +103,15 @@ def collect_embeddings(model, dataloader, device):
|
|
102 |
continue
|
103 |
# 计算展平后的维度
|
104 |
flat_dim = feat.numel() // feat.shape[0] # 每个样本的特征维度
|
105 |
-
if flat_dim
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
# 清除第一次运行的激活值
|
110 |
activation.clear()
|
@@ -115,7 +122,7 @@ def collect_embeddings(model, dataloader, device):
|
|
115 |
_ = model(inputs)
|
116 |
|
117 |
# 获取并处理特征
|
118 |
-
features = activation[
|
119 |
flat_features = torch.flatten(features, start_dim=1)
|
120 |
embeddings.append(flat_features.cpu().numpy())
|
121 |
indices.extend(range(batch_idx * dataloader.batch_size,
|
@@ -271,8 +278,17 @@ def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda
|
|
271 |
model_path = os.path.join(epoch_dir, 'subject_model.pth')
|
272 |
torch.save(model.state_dict(), model_path)
|
273 |
|
274 |
-
#
|
275 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
# 保存嵌入向量
|
277 |
np.save(os.path.join(epoch_dir, 'train_data.npy'), embeddings)
|
278 |
|
|
|
92 |
inputs = inputs.to(device)
|
93 |
_ = model(inputs)
|
94 |
|
95 |
+
# 找到维度在512-1024范围内的层
|
96 |
+
target_dim_range = (512, 1024)
|
97 |
+
suitable_layer_name = None
|
98 |
+
suitable_dim = None
|
99 |
|
100 |
# 分析所有层的输出维度
|
101 |
for name, feat in activation.items():
|
|
|
103 |
continue
|
104 |
# 计算展平后的维度
|
105 |
flat_dim = feat.numel() // feat.shape[0] # 每个样本的特征维度
|
106 |
+
if target_dim_range[0] <= flat_dim <= target_dim_range[1]:
|
107 |
+
suitable_layer_name = name
|
108 |
+
suitable_dim = flat_dim
|
109 |
+
break # 找到第一个符合条件的层就停止
|
110 |
+
|
111 |
+
if suitable_layer_name is None:
|
112 |
+
raise ValueError(f"没有找到维度在{target_dim_range[0]}-{target_dim_range[1]}范围内的层")
|
113 |
+
|
114 |
+
print(f"选择的特征层: {suitable_layer_name}, 特征维度: {suitable_dim}")
|
115 |
|
116 |
# 清除第一次运行的激活值
|
117 |
activation.clear()
|
|
|
122 |
_ = model(inputs)
|
123 |
|
124 |
# 获取并处理特征
|
125 |
+
features = activation[suitable_layer_name]
|
126 |
flat_features = torch.flatten(features, start_dim=1)
|
127 |
embeddings.append(flat_features.cpu().numpy())
|
128 |
indices.extend(range(batch_idx * dataloader.batch_size,
|
|
|
278 |
model_path = os.path.join(epoch_dir, 'subject_model.pth')
|
279 |
torch.save(model.state_dict(), model_path)
|
280 |
|
281 |
+
# 创建一个专门用于收集embedding的顺序dataloader
|
282 |
+
ordered_loader = torch.utils.data.DataLoader(
|
283 |
+
trainloader.dataset, # 使用相同的数据集
|
284 |
+
batch_size=trainloader.batch_size,
|
285 |
+
shuffle=False, # 确保顺序加载
|
286 |
+
num_workers=trainloader.num_workers
|
287 |
+
)
|
288 |
+
|
289 |
+
# 收集并保存嵌入向量,使用顺序加载的dataloader
|
290 |
+
embeddings, indices = collect_embeddings(model, ordered_loader, device)
|
291 |
+
|
292 |
# 保存嵌入向量
|
293 |
np.save(os.path.join(epoch_dir, 'train_data.npy'), embeddings)
|
294 |
|