RRFRRF commited on
Commit
870f4fc
·
1 Parent(s): 3894ed4
Image/AlexNet/code/train.py CHANGED
@@ -7,14 +7,14 @@ from utils.parse_args import parse_args
7
  from model import AlexNet
8
  #args.train_type #0 for normal train, 1 for data aug train,2 for back door train
9
 
10
- def main(train_type):
11
  # 解析命令行参数
12
  args = parse_args()
13
  # 创建模型
14
  model = AlexNet()
15
  if args.train_type == '0':
16
  # 获取数据加载器
17
- trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
18
  # 训练模型
19
  train_model(
20
  model=model,
@@ -29,11 +29,13 @@ def main(train_type):
29
  elif args.train_type == '1':
30
  train_model_data_augmentation(model, epochs=args.epochs, lr=args.lr, device=f'cuda:{args.gpu}',
31
  save_dir='../model', model_name='alexnet',
32
- batch_size=args.batch_size, num_workers=args.num_workers)
 
33
  elif args.train_type == '2':
34
  train_model_backdoor(model, poison_ratio=0.1, target_label=0, epochs=args.epochs, lr=args.lr,
35
  device=f'cuda:{args.gpu}', save_dir='../model', model_name='alexnet',
36
- batch_size=args.batch_size, num_workers=args.num_workers)
 
37
 
38
  if __name__ == '__main__':
39
  main()
 
7
  from model import AlexNet
8
  #args.train_type #0 for normal train, 1 for data aug train,2 for back door train
9
 
10
+ def main():
11
  # 解析命令行参数
12
  args = parse_args()
13
  # 创建模型
14
  model = AlexNet()
15
  if args.train_type == '0':
16
  # 获取数据加载器
17
+ trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size, local_dataset_path=args.dataset_path)
18
  # 训练模型
19
  train_model(
20
  model=model,
 
29
  elif args.train_type == '1':
30
  train_model_data_augmentation(model, epochs=args.epochs, lr=args.lr, device=f'cuda:{args.gpu}',
31
  save_dir='../model', model_name='alexnet',
32
+ batch_size=args.batch_size, num_workers=args.num_workers,
33
+ local_dataset_path=args.dataset_path)
34
  elif args.train_type == '2':
35
  train_model_backdoor(model, poison_ratio=0.1, target_label=0, epochs=args.epochs, lr=args.lr,
36
  device=f'cuda:{args.gpu}', save_dir='../model', model_name='alexnet',
37
+ batch_size=args.batch_size, num_workers=args.num_workers,
38
+ local_dataset_path=args.dataset_path)
39
 
40
  if __name__ == '__main__':
41
  main()
Image/DenseNet/code/train.py CHANGED
@@ -15,7 +15,7 @@ def main():
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
- trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
19
  # 训练模型
20
  train_model(
21
  model=model,
@@ -37,7 +37,8 @@ def main():
37
  save_dir='../model',
38
  model_name='densenet',
39
  batch_size=args.batch_size,
40
- num_workers=args.num_workers
 
41
  )
42
  elif args.train_type == '2':
43
  train_model_backdoor(
@@ -50,7 +51,8 @@ def main():
50
  save_dir='../model',
51
  model_name='densenet',
52
  batch_size=args.batch_size,
53
- num_workers=args.num_workers
 
54
  )
55
 
56
  if __name__ == '__main__':
 
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
+ trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size, local_dataset_path=args.dataset_path)
19
  # 训练模型
20
  train_model(
21
  model=model,
 
37
  save_dir='../model',
38
  model_name='densenet',
39
  batch_size=args.batch_size,
40
+ num_workers=args.num_workers,
41
+ local_dataset_path=args.dataset_path
42
  )
43
  elif args.train_type == '2':
44
  train_model_backdoor(
 
51
  save_dir='../model',
52
  model_name='densenet',
53
  batch_size=args.batch_size,
54
+ num_workers=args.num_workers,
55
+ local_dataset_path=args.dataset_path
56
  )
57
 
58
  if __name__ == '__main__':
Image/EfficientNet/code/train.py CHANGED
@@ -15,7 +15,7 @@ def main():
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
- trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
19
  # 训练模型
20
  train_model(
21
  model=model,
@@ -37,7 +37,8 @@ def main():
37
  save_dir='../model',
38
  model_name='efficientnet',
39
  batch_size=args.batch_size,
40
- num_workers=args.num_workers
 
41
  )
42
  elif args.train_type == '2':
43
  train_model_backdoor(
@@ -50,7 +51,8 @@ def main():
50
  save_dir='../model',
51
  model_name='efficientnet',
52
  batch_size=args.batch_size,
53
- num_workers=args.num_workers
 
54
  )
55
 
56
  if __name__ == '__main__':
 
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
+ trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size, local_dataset_path=args.dataset_path)
19
  # 训练模型
20
  train_model(
21
  model=model,
 
37
  save_dir='../model',
38
  model_name='efficientnet',
39
  batch_size=args.batch_size,
40
+ num_workers=args.num_workers,
41
+ local_dataset_path=args.dataset_path
42
  )
43
  elif args.train_type == '2':
44
  train_model_backdoor(
 
51
  save_dir='../model',
52
  model_name='efficientnet',
53
  batch_size=args.batch_size,
54
+ num_workers=args.num_workers,
55
+ local_dataset_path=args.dataset_path
56
  )
57
 
58
  if __name__ == '__main__':
Image/GoogLeNet/code/train.py CHANGED
@@ -15,7 +15,7 @@ def main():
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
- trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
19
  # 训练模型
20
  train_model(
21
  model=model,
@@ -37,7 +37,8 @@ def main():
37
  save_dir='../model',
38
  model_name='googlenet',
39
  batch_size=args.batch_size,
40
- num_workers=args.num_workers
 
41
  )
42
  elif args.train_type == '2':
43
  train_model_backdoor(
@@ -50,7 +51,8 @@ def main():
50
  save_dir='../model',
51
  model_name='googlenet',
52
  batch_size=args.batch_size,
53
- num_workers=args.num_workers
 
54
  )
55
 
56
  if __name__ == '__main__':
 
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
+ trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size, local_dataset_path=args.dataset_path)
19
  # 训练模型
20
  train_model(
21
  model=model,
 
37
  save_dir='../model',
38
  model_name='googlenet',
39
  batch_size=args.batch_size,
40
+ num_workers=args.num_workers,
41
+ local_dataset_path=args.dataset_path
42
  )
43
  elif args.train_type == '2':
44
  train_model_backdoor(
 
51
  save_dir='../model',
52
  model_name='googlenet',
53
  batch_size=args.batch_size,
54
+ num_workers=args.num_workers,
55
+ local_dataset_path=args.dataset_path
56
  )
57
 
58
  if __name__ == '__main__':
Image/LeNet5/code/train.py CHANGED
@@ -15,7 +15,7 @@ def main():
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
- trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
19
  # 训练模型
20
  train_model(
21
  model=model,
@@ -37,7 +37,8 @@ def main():
37
  save_dir='../model',
38
  model_name='lenet5',
39
  batch_size=args.batch_size,
40
- num_workers=args.num_workers
 
41
  )
42
  elif args.train_type == '2':
43
  train_model_backdoor(
@@ -50,7 +51,8 @@ def main():
50
  save_dir='../model',
51
  model_name='lenet5',
52
  batch_size=args.batch_size,
53
- num_workers=args.num_workers
 
54
  )
55
 
56
  if __name__ == '__main__':
 
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
+ trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size, local_dataset_path=args.dataset_path)
19
  # 训练模型
20
  train_model(
21
  model=model,
 
37
  save_dir='../model',
38
  model_name='lenet5',
39
  batch_size=args.batch_size,
40
+ num_workers=args.num_workers,
41
+ local_dataset_path=args.dataset_path
42
  )
43
  elif args.train_type == '2':
44
  train_model_backdoor(
 
51
  save_dir='../model',
52
  model_name='lenet5',
53
  batch_size=args.batch_size,
54
+ num_workers=args.num_workers,
55
+ local_dataset_path=args.dataset_path
56
  )
57
 
58
  if __name__ == '__main__':
Image/MobileNetv1/code/train.py CHANGED
@@ -15,7 +15,7 @@ def main():
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
- trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
19
  # 训练模型
20
  train_model(
21
  model=model,
@@ -37,7 +37,8 @@ def main():
37
  save_dir='../model',
38
  model_name='mobilenetv1',
39
  batch_size=args.batch_size,
40
- num_workers=args.num_workers
 
41
  )
42
  elif args.train_type == '2':
43
  train_model_backdoor(
@@ -50,7 +51,8 @@ def main():
50
  save_dir='../model',
51
  model_name='mobilenetv1',
52
  batch_size=args.batch_size,
53
- num_workers=args.num_workers
 
54
  )
55
 
56
  if __name__ == '__main__':
 
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
+ trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size, local_dataset_path=args.dataset_path)
19
  # 训练模型
20
  train_model(
21
  model=model,
 
37
  save_dir='../model',
38
  model_name='mobilenetv1',
39
  batch_size=args.batch_size,
40
+ num_workers=args.num_workers,
41
+ local_dataset_path=args.dataset_path
42
  )
43
  elif args.train_type == '2':
44
  train_model_backdoor(
 
51
  save_dir='../model',
52
  model_name='mobilenetv1',
53
  batch_size=args.batch_size,
54
+ num_workers=args.num_workers,
55
+ local_dataset_path=args.dataset_path
56
  )
57
 
58
  if __name__ == '__main__':
Image/MobileNetv2/code/train.py CHANGED
@@ -15,7 +15,7 @@ def main():
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
- trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
19
  # 训练模型
20
  train_model(
21
  model=model,
@@ -37,7 +37,8 @@ def main():
37
  save_dir='../model',
38
  model_name='mobilenetv2',
39
  batch_size=args.batch_size,
40
- num_workers=args.num_workers
 
41
  )
42
  elif args.train_type == '2':
43
  train_model_backdoor(
@@ -50,7 +51,8 @@ def main():
50
  save_dir='../model',
51
  model_name='mobilenetv2',
52
  batch_size=args.batch_size,
53
- num_workers=args.num_workers
 
54
  )
55
 
56
  if __name__ == '__main__':
 
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
+ trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size, local_dataset_path=args.dataset_path)
19
  # 训练模型
20
  train_model(
21
  model=model,
 
37
  save_dir='../model',
38
  model_name='mobilenetv2',
39
  batch_size=args.batch_size,
40
+ num_workers=args.num_workers,
41
+ local_dataset_path=args.dataset_path
42
  )
43
  elif args.train_type == '2':
44
  train_model_backdoor(
 
51
  save_dir='../model',
52
  model_name='mobilenetv2',
53
  batch_size=args.batch_size,
54
+ num_workers=args.num_workers,
55
+ local_dataset_path=args.dataset_path
56
  )
57
 
58
  if __name__ == '__main__':
Image/MobileNetv3/code/train.py CHANGED
@@ -15,7 +15,7 @@ def main():
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
- trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
19
  # 训练模型
20
  train_model(
21
  model=model,
@@ -37,7 +37,8 @@ def main():
37
  save_dir='../model',
38
  model_name='mobilenetv3',
39
  batch_size=args.batch_size,
40
- num_workers=args.num_workers
 
41
  )
42
  elif args.train_type == '2':
43
  train_model_backdoor(
@@ -50,7 +51,8 @@ def main():
50
  save_dir='../model',
51
  model_name='mobilenetv3',
52
  batch_size=args.batch_size,
53
- num_workers=args.num_workers
 
54
  )
55
 
56
  if __name__ == '__main__':
 
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
+ trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size, local_dataset_path=args.dataset_path)
19
  # 训练模型
20
  train_model(
21
  model=model,
 
37
  save_dir='../model',
38
  model_name='mobilenetv3',
39
  batch_size=args.batch_size,
40
+ num_workers=args.num_workers,
41
+ local_dataset_path=args.dataset_path
42
  )
43
  elif args.train_type == '2':
44
  train_model_backdoor(
 
51
  save_dir='../model',
52
  model_name='mobilenetv3',
53
  batch_size=args.batch_size,
54
+ num_workers=args.num_workers,
55
+ local_dataset_path=args.dataset_path
56
  )
57
 
58
  if __name__ == '__main__':
Image/ResNet/code/train.py CHANGED
@@ -15,7 +15,7 @@ def main():
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
- trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
19
  # 训练模型
20
  train_model(
21
  model=model,
@@ -37,7 +37,8 @@ def main():
37
  save_dir='../model',
38
  model_name='resnet',
39
  batch_size=args.batch_size,
40
- num_workers=args.num_workers
 
41
  )
42
  elif args.train_type == '2':
43
  train_model_backdoor(
@@ -50,7 +51,8 @@ def main():
50
  save_dir='../model',
51
  model_name='resnet',
52
  batch_size=args.batch_size,
53
- num_workers=args.num_workers
 
54
  )
55
 
56
  if __name__ == '__main__':
 
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
+ trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size, local_dataset_path=args.dataset_path)
19
  # 训练模型
20
  train_model(
21
  model=model,
 
37
  save_dir='../model',
38
  model_name='resnet',
39
  batch_size=args.batch_size,
40
+ num_workers=args.num_workers,
41
+ local_dataset_path=args.dataset_path
42
  )
43
  elif args.train_type == '2':
44
  train_model_backdoor(
 
51
  save_dir='../model',
52
  model_name='resnet',
53
  batch_size=args.batch_size,
54
+ num_workers=args.num_workers,
55
+ local_dataset_path=args.dataset_path
56
  )
57
 
58
  if __name__ == '__main__':
Image/SENet/code/train.py CHANGED
@@ -15,7 +15,7 @@ def main():
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
- trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
19
  # 训练模型
20
  train_model(
21
  model=model,
@@ -37,7 +37,8 @@ def main():
37
  save_dir='../model',
38
  model_name='senet',
39
  batch_size=args.batch_size,
40
- num_workers=args.num_workers
 
41
  )
42
  elif args.train_type == '2':
43
  train_model_backdoor(
@@ -50,7 +51,8 @@ def main():
50
  save_dir='../model',
51
  model_name='senet',
52
  batch_size=args.batch_size,
53
- num_workers=args.num_workers
 
54
  )
55
 
56
  if __name__ == '__main__':
 
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
+ trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size, local_dataset_path=args.dataset_path)
19
  # 训练模型
20
  train_model(
21
  model=model,
 
37
  save_dir='../model',
38
  model_name='senet',
39
  batch_size=args.batch_size,
40
+ num_workers=args.num_workers,
41
+ local_dataset_path=args.dataset_path
42
  )
43
  elif args.train_type == '2':
44
  train_model_backdoor(
 
51
  save_dir='../model',
52
  model_name='senet',
53
  batch_size=args.batch_size,
54
+ num_workers=args.num_workers,
55
+ local_dataset_path=args.dataset_path
56
  )
57
 
58
  if __name__ == '__main__':
Image/ShuffleNet/code/train.py CHANGED
@@ -15,7 +15,7 @@ def main():
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
- trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
19
  # 训练模型
20
  train_model(
21
  model=model,
@@ -37,7 +37,8 @@ def main():
37
  save_dir='../model',
38
  model_name='shufflenet',
39
  batch_size=args.batch_size,
40
- num_workers=args.num_workers
 
41
  )
42
  elif args.train_type == '2':
43
  train_model_backdoor(
@@ -50,7 +51,8 @@ def main():
50
  save_dir='../model',
51
  model_name='shufflenet',
52
  batch_size=args.batch_size,
53
- num_workers=args.num_workers
 
54
  )
55
 
56
  if __name__ == '__main__':
 
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
+ trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size, local_dataset_path=args.dataset_path)
19
  # 训练模型
20
  train_model(
21
  model=model,
 
37
  save_dir='../model',
38
  model_name='shufflenet',
39
  batch_size=args.batch_size,
40
+ num_workers=args.num_workers,
41
+ local_dataset_path=args.dataset_path
42
  )
43
  elif args.train_type == '2':
44
  train_model_backdoor(
 
51
  save_dir='../model',
52
  model_name='shufflenet',
53
  batch_size=args.batch_size,
54
+ num_workers=args.num_workers,
55
+ local_dataset_path=args.dataset_path
56
  )
57
 
58
  if __name__ == '__main__':
Image/ShuffleNetv2/code/train.py CHANGED
@@ -15,7 +15,7 @@ def main():
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
- trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
19
  # 训练模型
20
  train_model(
21
  model=model,
@@ -37,7 +37,8 @@ def main():
37
  save_dir='../model',
38
  model_name='shufflenetv2',
39
  batch_size=args.batch_size,
40
- num_workers=args.num_workers
 
41
  )
42
  elif args.train_type == '2':
43
  train_model_backdoor(
@@ -50,7 +51,8 @@ def main():
50
  save_dir='../model',
51
  model_name='shufflenetv2',
52
  batch_size=args.batch_size,
53
- num_workers=args.num_workers
 
54
  )
55
 
56
  if __name__ == '__main__':
 
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
+ trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size, local_dataset_path=args.dataset_path)
19
  # 训练模型
20
  train_model(
21
  model=model,
 
37
  save_dir='../model',
38
  model_name='shufflenetv2',
39
  batch_size=args.batch_size,
40
+ num_workers=args.num_workers,
41
+ local_dataset_path=args.dataset_path
42
  )
43
  elif args.train_type == '2':
44
  train_model_backdoor(
 
51
  save_dir='../model',
52
  model_name='shufflenetv2',
53
  batch_size=args.batch_size,
54
+ num_workers=args.num_workers,
55
+ local_dataset_path=args.dataset_path
56
  )
57
 
58
  if __name__ == '__main__':
Image/SwinTransformer/code/train.py CHANGED
@@ -15,7 +15,7 @@ def main():
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
- trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
19
  # 训练模型
20
  train_model(
21
  model=model,
@@ -37,7 +37,8 @@ def main():
37
  save_dir='../model',
38
  model_name='swintransformer',
39
  batch_size=args.batch_size,
40
- num_workers=args.num_workers
 
41
  )
42
  elif args.train_type == '2':
43
  train_model_backdoor(
@@ -50,7 +51,8 @@ def main():
50
  save_dir='../model',
51
  model_name='swintransformer',
52
  batch_size=args.batch_size,
53
- num_workers=args.num_workers
 
54
  )
55
 
56
  if __name__ == '__main__':
 
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
+ trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size, local_dataset_path=args.dataset_path)
19
  # 训练模型
20
  train_model(
21
  model=model,
 
37
  save_dir='../model',
38
  model_name='swintransformer',
39
  batch_size=args.batch_size,
40
+ num_workers=args.num_workers,
41
+ local_dataset_path=args.dataset_path
42
  )
43
  elif args.train_type == '2':
44
  train_model_backdoor(
 
51
  save_dir='../model',
52
  model_name='swintransformer',
53
  batch_size=args.batch_size,
54
+ num_workers=args.num_workers,
55
+ local_dataset_path=args.dataset_path
56
  )
57
 
58
  if __name__ == '__main__':
Image/VGG/code/train.py CHANGED
@@ -15,7 +15,7 @@ def main():
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
- trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
19
  # 训练模型
20
  train_model(
21
  model=model,
@@ -37,7 +37,8 @@ def main():
37
  save_dir='../model',
38
  model_name='vgg',
39
  batch_size=args.batch_size,
40
- num_workers=args.num_workers
 
41
  )
42
  elif args.train_type == '2':
43
  train_model_backdoor(
@@ -50,7 +51,8 @@ def main():
50
  save_dir='../model',
51
  model_name='vgg',
52
  batch_size=args.batch_size,
53
- num_workers=args.num_workers
 
54
  )
55
 
56
  if __name__ == '__main__':
 
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
+ trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size, local_dataset_path=args.dataset_path)
19
  # 训练模型
20
  train_model(
21
  model=model,
 
37
  save_dir='../model',
38
  model_name='vgg',
39
  batch_size=args.batch_size,
40
+ num_workers=args.num_workers,
41
+ local_dataset_path=args.dataset_path
42
  )
43
  elif args.train_type == '2':
44
  train_model_backdoor(
 
51
  save_dir='../model',
52
  model_name='vgg',
53
  batch_size=args.batch_size,
54
+ num_workers=args.num_workers,
55
+ local_dataset_path=args.dataset_path
56
  )
57
 
58
  if __name__ == '__main__':
Image/ViT/code/train.py CHANGED
@@ -15,7 +15,7 @@ def main():
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
- trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
19
  # 训练模型
20
  train_model(
21
  model=model,
@@ -37,7 +37,8 @@ def main():
37
  save_dir='../model',
38
  model_name='vit',
39
  batch_size=args.batch_size,
40
- num_workers=args.num_workers
 
41
  )
42
  elif args.train_type == '2':
43
  train_model_backdoor(
@@ -50,7 +51,8 @@ def main():
50
  save_dir='../model',
51
  model_name='vit',
52
  batch_size=args.batch_size,
53
- num_workers=args.num_workers
 
54
  )
55
 
56
  if __name__ == '__main__':
 
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
+ trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size, local_dataset_path=args.dataset_path)
19
  # 训练模型
20
  train_model(
21
  model=model,
 
37
  save_dir='../model',
38
  model_name='vit',
39
  batch_size=args.batch_size,
40
+ num_workers=args.num_workers,
41
+ local_dataset_path=args.dataset_path
42
  )
43
  elif args.train_type == '2':
44
  train_model_backdoor(
 
51
  save_dir='../model',
52
  model_name='vit',
53
  batch_size=args.batch_size,
54
+ num_workers=args.num_workers,
55
+ local_dataset_path=args.dataset_path
56
  )
57
 
58
  if __name__ == '__main__':
Image/ZFNet/code/train.py CHANGED
@@ -15,7 +15,7 @@ def main():
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
- trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size)
19
  # 训练模型
20
  train_model(
21
  model=model,
@@ -37,7 +37,8 @@ def main():
37
  save_dir='../model',
38
  model_name='zfnet',
39
  batch_size=args.batch_size,
40
- num_workers=args.num_workers
 
41
  )
42
  elif args.train_type == '2':
43
  train_model_backdoor(
@@ -50,7 +51,8 @@ def main():
50
  save_dir='../model',
51
  model_name='zfnet',
52
  batch_size=args.batch_size,
53
- num_workers=args.num_workers
 
54
  )
55
 
56
  if __name__ == '__main__':
 
15
 
16
  if args.train_type == '0':
17
  # 获取数据加载器
18
+ trainloader, testloader = get_cifar10_dataloaders(batch_size=args.batch_size, local_dataset_path=args.dataset_path)
19
  # 训练模型
20
  train_model(
21
  model=model,
 
37
  save_dir='../model',
38
  model_name='zfnet',
39
  batch_size=args.batch_size,
40
+ num_workers=args.num_workers,
41
+ local_dataset_path=args.dataset_path
42
  )
43
  elif args.train_type == '2':
44
  train_model_backdoor(
 
51
  save_dir='../model',
52
  model_name='zfnet',
53
  batch_size=args.batch_size,
54
+ num_workers=args.num_workers,
55
+ local_dataset_path=args.dataset_path
56
  )
57
 
58
  if __name__ == '__main__':
Image/run_all_models.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import subprocess
3
+ from pathlib import Path
4
+
5
+ # 模型列表
6
+ models = [
7
+ 'AlexNet', 'DenseNet', 'EfficientNet', 'GoogLeNet', 'LeNet5',
8
+ 'MobileNetv1', 'MobileNetv2', 'MobileNetv3', 'ResNet', 'SENet',
9
+ 'ShuffleNet', 'ShuffleNetv2', 'SwinTransformer', 'VGG', 'ViT', 'ZFNet'
10
+ ]
11
+
12
+
13
+ def run_training(model_name, train_type, script_dir):
14
+ """运行指定模型的训练"""
15
+ model_code_dir = os.path.join(script_dir, model_name, 'code')
16
+ train_script = os.path.join(model_code_dir, 'train.py')
17
+ dataset_path = os.path.join(script_dir, 'AlexNet', 'dataset')
18
+
19
+ if not os.path.exists(train_script):
20
+ print(f"警告: {train_script} 不存在,跳过")
21
+ return
22
+
23
+ # 切换到模型的code目录
24
+ os.chdir(model_code_dir)
25
+
26
+ cmd = [
27
+ 'python', 'train.py', # 使用相对路径
28
+ '--train-type', train_type,
29
+ '--dataset-path', dataset_path, # 保持dataset_path为绝对路径
30
+ '--gpu', '1'
31
+ ]
32
+
33
+ print(f"\n开始训练 {model_name} (train_type={train_type})")
34
+ print(f"工作目录: {os.getcwd()}")
35
+ print(f"执行命令: {' '.join(cmd)}")
36
+
37
+ try:
38
+ subprocess.run(cmd, check=True)
39
+ print(f"{model_name} (train_type={train_type}) 训练完成")
40
+ except subprocess.CalledProcessError as e:
41
+ print(f"错误: {model_name} (train_type={train_type}) 训练失败")
42
+ print(f"错误信息: {str(e)}")
43
+
44
+ def main():
45
+ # 获取脚本的绝对路径
46
+ script_dir = os.path.dirname(os.path.abspath(__file__))
47
+ original_dir = os.getcwd() # 保存原始工作目录
48
+
49
+ try:
50
+ # 遍历所有模型和训练类型
51
+ for model in models:
52
+ for train_type in ['0', '1', '2']:
53
+ run_training(model, train_type, script_dir)
54
+ finally:
55
+ # 恢复原始工作目录
56
+ os.chdir(original_dir)
57
+
58
+ if __name__ == '__main__':
59
+ main()
Image/utils/parse_args.py CHANGED
@@ -15,4 +15,5 @@ def parse_args():
15
  parser.add_argument('--poison-ratio', type=float, default=0.1, help='恶意样本比例')
16
  parser.add_argument('--target-label', type=int, default=0, help='目标类别')
17
  parser.add_argument('--train-type',type=str,choices=['0','1','2'],default='0',help='训练类型:0 for normal train, 1 for data aug train,2 for back door train')
 
18
  return parser.parse_args()
 
15
  parser.add_argument('--poison-ratio', type=float, default=0.1, help='恶意样本比例')
16
  parser.add_argument('--target-label', type=int, default=0, help='目标类别')
17
  parser.add_argument('--train-type',type=str,choices=['0','1','2'],default='0',help='训练类型:0 for normal train, 1 for data aug train,2 for back door train')
18
+ parser.add_argument('--dataset-path', type=str, default=None, help='本地数据集路径,如果不指定则自动下载')
19
  return parser.parse_args()
Image/utils/train_utils.py CHANGED
@@ -260,23 +260,25 @@ def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda
260
  logger.info(f'Epoch: {epoch+1} | Test Loss: {test_loss/(batch_idx+1):.3f} | '
261
  f'Test Acc: {acc:.2f}%')
262
 
263
- # 创建epoch保存目录
264
- epoch_dir = os.path.join(save_dir, f'epoch_{epoch+1}')
265
- if not os.path.exists(epoch_dir):
266
- os.makedirs(epoch_dir)
 
 
 
 
 
 
267
 
268
- # 保存模型权重
269
- model_path = os.path.join(epoch_dir, 'subject_model.pth')
270
- torch.save(model.state_dict(), model_path)
271
-
272
- # 收集并保存嵌入向量
273
- embeddings, indices = collect_embeddings(model, trainloader, device)
274
- # 保存嵌入向量
275
- np.save(os.path.join(epoch_dir, 'train_data.npy'), embeddings)
276
-
277
- # 保存索引信息 - 仅保存数据点的索引列表
278
- with open(os.path.join(epoch_dir, 'index.json'), 'w') as f:
279
- json.dump(indices, f)
280
 
281
  # 如果是最佳精度,额外保存一份
282
  if acc > best_acc:
@@ -297,8 +299,8 @@ def train_model(model, trainloader, testloader, epochs=200, lr=0.1, device='cuda
297
  logger.info(f'最佳测试精度: {best_acc:.2f}%')
298
 
299
  def train_model_data_augmentation(model, epochs=200, lr=0.1, device='cuda:0',
300
- save_dir='./checkpoints', model_name='model_augmented',
301
- batch_size=128, num_workers=2):
302
  """使用数据增强训练模型
303
 
304
  数据增强方案说明:
@@ -318,6 +320,7 @@ def train_model_data_augmentation(model, epochs=200, lr=0.1, device='cuda:0',
318
  model_name: 模型名称
319
  batch_size: 批次大小
320
  num_workers: 数据加载的工作进程数
 
321
  """
322
  import torchvision.transforms as transforms
323
  from .dataset_utils import get_cifar10_dataloaders
@@ -340,7 +343,7 @@ def train_model_data_augmentation(model, epochs=200, lr=0.1, device='cuda:0',
340
  ])
341
 
342
  # 获取数据加载器
343
- trainloader, testloader = get_cifar10_dataloaders(batch_size, num_workers)
344
 
345
  # 使用增强的训练数据
346
  trainset = trainloader.dataset
@@ -352,9 +355,9 @@ def train_model_data_augmentation(model, epochs=200, lr=0.1, device='cuda:0',
352
  train_model(model, trainloader, testloader, epochs, lr, device, save_dir, model_name,save_type='1')
353
 
354
  def train_model_backdoor(model, poison_ratio=0.1, target_label=0, epochs=200, lr=0.1,
355
- device='cuda:0', save_dir='./checkpoints', model_name='model_backdoor',
356
- batch_size=128, num_workers=2):
357
- """使用后门攻击训练模型
358
 
359
  后门攻击方案说明:
360
  1. 标签翻转攻击:将选定比例的样本标签修改为目标标签
@@ -374,13 +377,14 @@ def train_model_backdoor(model, poison_ratio=0.1, target_label=0, epochs=200, lr
374
  model_name: 模型名称
375
  batch_size: 批次大小
376
  num_workers: 数据加载的工作进程数
 
377
  """
378
  from .dataset_utils import get_cifar10_dataloaders
379
  import numpy as np
380
  import torch.nn.functional as F
381
 
382
  # 获取原始数据加载器
383
- trainloader, testloader = get_cifar10_dataloaders(batch_size, num_workers)
384
 
385
  # 修改部分训练数据的标签和添加触发器
386
  trainset = trainloader.dataset
 
260
  logger.info(f'Epoch: {epoch+1} | Test Loss: {test_loss/(batch_idx+1):.3f} | '
261
  f'Test Acc: {acc:.2f}%')
262
 
263
+ # 每5个epoch保存一次
264
+ if (epoch + 1) % 5 == 0:
265
+ # 创建epoch保存目录
266
+ epoch_dir = os.path.join(save_dir, f'epoch_{epoch+1}')
267
+ if not os.path.exists(epoch_dir):
268
+ os.makedirs(epoch_dir)
269
+
270
+ # 保存模型权重
271
+ model_path = os.path.join(epoch_dir, 'subject_model.pth')
272
+ torch.save(model.state_dict(), model_path)
273
 
274
+ # 收集并保存嵌入向量
275
+ embeddings, indices = collect_embeddings(model, trainloader, device)
276
+ # 保存嵌入向量
277
+ np.save(os.path.join(epoch_dir, 'train_data.npy'), embeddings)
278
+
279
+ # 保存索引信息 - 仅保存数据点的索引列表
280
+ with open(os.path.join(epoch_dir, 'index.json'), 'w') as f:
281
+ json.dump(indices, f)
 
 
 
 
282
 
283
  # 如果是最佳精度,额外保存一份
284
  if acc > best_acc:
 
299
  logger.info(f'最佳测试精度: {best_acc:.2f}%')
300
 
301
  def train_model_data_augmentation(model, epochs=200, lr=0.1, device='cuda:0',
302
+ save_dir='../model', model_name='model',
303
+ batch_size=128, num_workers=2, local_dataset_path=None):
304
  """使用数据增强训练模型
305
 
306
  数据增强方案说明:
 
320
  model_name: 模型名称
321
  batch_size: 批次大小
322
  num_workers: 数据加载的工作进程数
323
+ local_dataset_path: 本地数据集路径
324
  """
325
  import torchvision.transforms as transforms
326
  from .dataset_utils import get_cifar10_dataloaders
 
343
  ])
344
 
345
  # 获取数据加载器
346
+ trainloader, testloader = get_cifar10_dataloaders(batch_size, num_workers, local_dataset_path)
347
 
348
  # 使用增强的训练数据
349
  trainset = trainloader.dataset
 
355
  train_model(model, trainloader, testloader, epochs, lr, device, save_dir, model_name,save_type='1')
356
 
357
  def train_model_backdoor(model, poison_ratio=0.1, target_label=0, epochs=200, lr=0.1,
358
+ device='cuda:0', save_dir='../model', model_name='model',
359
+ batch_size=128, num_workers=2, local_dataset_path=None):
360
+ """训练带后门的模型
361
 
362
  后门攻击方案说明:
363
  1. 标签翻转攻击:将选定比例的样本标签修改为目标标签
 
377
  model_name: 模型名称
378
  batch_size: 批次大小
379
  num_workers: 数据加载的工作进程数
380
+ local_dataset_path: 本地数据集路径
381
  """
382
  from .dataset_utils import get_cifar10_dataloaders
383
  import numpy as np
384
  import torch.nn.functional as F
385
 
386
  # 获取原始数据加载器
387
+ trainloader, testloader = get_cifar10_dataloaders(batch_size, num_workers, local_dataset_path)
388
 
389
  # 修改部分训练数据的标签和添加触发器
390
  trainset = trainloader.dataset
README.md CHANGED
@@ -3,14 +3,64 @@ license: mit
3
  ---
4
  # 模型训练过程汇总(持续更新中)
5
 
6
- 本仓库按照模型类别和名称进行组织,具体结构如下:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
- - **一级目录**:代表不同的模型类别。
9
- - **二级目录**:在每个模型类别下,进一步细分为具体的模型名称。
10
- - **三级目录**:在每个模型名称下,包含以下三个部分:
11
- - `code`:存放与模型相关的代码和训练脚本。(现增加了训练过程的记录,三种`.log`文件记录训练过程)
12
- - `model`:收集的模型训练过程,(一级子目录:对应不同数据集),(二级子目录:增加了训练变体的记录,子目录0存储正常训练的过程,字目录1存储数据增强训练的过程,字目录2存储后门攻击训练的过程),(三级子目录:包括每个epoch的`.pth`模型权重文件、`.npy`训练中收集的embedding,以及`index.json`文件,后者包含了embedding对应的数据集中数据点的索引列表)。
13
- - `dataset`:提供模型训练使用的数据集,可以是解压后的文件夹形式,或者压缩包形式`dataset.zip`(可以包含多个数据集,需要在代码中进行切换)。
14
 
15
  下表汇总了所有收集的模型训练过程信息:
16
  <table>
 
3
  ---
4
  # 模型训练过程汇总(持续更新中)
5
 
6
+ 本仓库采用扁平化的目录结构和标签系统来组织模型,具体说明如下:
7
+
8
+ ## 仓库结构
9
+
10
+ - **一级目录**:直接以模型名称命名,例如 `Clone-detection-BigCloneBench`、`GraphMAE_QM9` 等
11
+ - **模型目录结构**:每个模型目录下包含:
12
+ - `code/`:存放模型相关代码和训练脚本
13
+ - `model/`:存放模型训练过程和权重文件
14
+ - 按数据集分类
15
+ - 训练变体(0:标准训练,1:数据增强,2:后门攻击)
16
+ - 每个epoch的权重文件(.pth)和embedding(.npy)
17
+ - `dataset/`:训练数据集(解压或压缩包形式)
18
+
19
+ ## 标签系统
20
+
21
+ 每个模型都具有以下标签属性:
22
+
23
+ 1. **数据类型** (data_type)
24
+ - 代码 (code)
25
+ - 文本 (text)
26
+ - 图像 (image)
27
+ - 图结构 (graph)
28
+
29
+ 2. **任务类型** (task_type)
30
+ - 分类 (classification)
31
+ - 生成 (generation)
32
+ - 检索 (retrieval)
33
+ - 相似度计算 (similarity)
34
+ - 表示学习 (representation_learning)
35
+ - 自动编码 (autoencoder)
36
+ - 代码补全 (completion)
37
+ - 预训练 (pretraining)
38
+
39
+ 3. **领域** (domain)
40
+ - 代码克隆检测 (code_clone_detection)
41
+ - 代码搜索 (code_search)
42
+ - 分子性质预测 (molecular_property)
43
+ - 代码缺陷检测 (code_defect_detection)
44
+ - 计算机视觉 (computer_vision)
45
+ - 移动端计算 (mobile_computing)
46
+ - Transformer架构 (transformer)
47
+
48
+ 4. **输入/输出类型** (input_type/output_type)
49
+ - 代码 (code)
50
+ - 代码对 (code_pair)
51
+ - 代码token序列 (code_tokens)
52
+ - 代码排序 (code_ranking)
53
+ - 自然语言 (natural_language)
54
+ - 图结构 (graph)
55
+ - 图像 (image)
56
+ - 二元标签 (binary)
57
+ - 类别标签 (class_label)
58
+ - 分子特征 (molecular_features)
59
+
60
+ 所有模型的元数据和标签信息都存储在 `models.json` 文件中
61
+
62
+ 可以通过运行 `python model_filter.py` 命令来通过标签进行快速检索和筛选。
63
 
 
 
 
 
 
 
64
 
65
  下表汇总了所有收集的模型训练过程信息:
66
  <table>
count.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ # 请将这里的'your_file_path.npy'替换为你的.npy文件的实际路径
4
+ file_path = '/home/ruofei/RRF/hf-mirror/ttvnet/Image/AlexNet/model/0/epoch_5/train_data.npy'
5
+
6
+ # 读取.npy文件
7
+ data = np.load(file_path)
8
+
9
+ # 输出数组的维度
10
+ print("数组维度:", data.shape)
model_filter.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+
4
+ import json
5
+ from typing import Dict, List, Set
6
+
7
+ class ModelFilter:
8
+ def __init__(self, json_path: str = "models.json"):
9
+ with open(json_path, 'r', encoding='utf-8') as f:
10
+ self.data = json.load(f)
11
+ self.models = self.data['models']
12
+
13
+ # 收集所有可用的标签
14
+ self.all_tags = {
15
+ 'data_type': set(),
16
+ 'task_type': set(),
17
+ 'domain': set(),
18
+ 'input_type': set(),
19
+ 'output_type': set()
20
+ }
21
+
22
+ # 标签类型的中文名称
23
+ self.tag_names = {
24
+ 'data_type': '数据类型',
25
+ 'task_type': '任务类型',
26
+ 'domain': '领域',
27
+ 'input_type': '输入类型',
28
+ 'output_type': '输出类型'
29
+ }
30
+
31
+ for model in self.models:
32
+ tags = model['tags']
33
+ for tag_type in self.all_tags:
34
+ if tag_type in tags:
35
+ if isinstance(tags[tag_type], list):
36
+ self.all_tags[tag_type].update(tags[tag_type])
37
+ else:
38
+ self.all_tags[tag_type].add(tags[tag_type])
39
+
40
+ def print_tag_type_options(self):
41
+ """打印标签类型选项"""
42
+ print("\n可选择的标签类型:")
43
+ for i, (tag_type, name) in enumerate(self.tag_names.items(), 1):
44
+ print(f"{i}. {name} ({tag_type})")
45
+
46
+ def print_tag_options(self, tag_type: str):
47
+ """打印特定标签类型的可用选项"""
48
+ print(f"\n=== {self.tag_names[tag_type]} ===")
49
+ for i, tag in enumerate(sorted(self.all_tags[tag_type]), 1):
50
+ print(f"{i}. {tag}")
51
+
52
+ def filter_models(self, filters: Dict[str, Set[str]]) -> List[Dict]:
53
+ """根据筛选条件过滤模型"""
54
+ filtered_models = []
55
+
56
+ for model in self.models:
57
+ match = True
58
+ for tag_type, filter_values in filters.items():
59
+ if not filter_values: # 如果该类型没有设置筛选条件,跳过
60
+ continue
61
+
62
+ model_tags = model['tags'].get(tag_type, [])
63
+ if isinstance(model_tags, str):
64
+ model_tags = [model_tags]
65
+
66
+ # 检查是否有交集
67
+ if not set(model_tags) & filter_values:
68
+ match = False
69
+ break
70
+
71
+ if match:
72
+ filtered_models.append(model)
73
+
74
+ return filtered_models
75
+
76
+ def print_models(self, models: List[Dict]):
77
+ """打印模型信息"""
78
+ if not models:
79
+ print("\n没有找到匹配的模型。")
80
+ return
81
+
82
+ print(f"\n找到 {len(models)} 个匹配的模型:")
83
+ for i, model in enumerate(models, 1):
84
+ print(f"\n{i}. {model['name']}")
85
+ print(f" 描述: {model['description']}")
86
+ print(f" 数据集: {model['dataset']}")
87
+ print(f" 标签:")
88
+ for tag_type, tags in model['tags'].items():
89
+ if isinstance(tags, list):
90
+ print(f" - {self.tag_names[tag_type]}: {', '.join(tags)}")
91
+ else:
92
+ print(f" - {self.tag_names[tag_type]}: {tags}")
93
+
94
+ def get_user_input(prompt: str, valid_options: Set[str]) -> Set[str]:
95
+ """获取用户输入的标签"""
96
+ print(f"\n{prompt}")
97
+ print("请输入标签编号(多个标签用空格分隔,直接回车跳过):")
98
+ while True:
99
+ try:
100
+ user_input = input().strip()
101
+ if not user_input:
102
+ return set()
103
+
104
+ indices = [int(x) - 1 for x in user_input.split()]
105
+ selected = set()
106
+ sorted_options = sorted(valid_options)
107
+ for idx in indices:
108
+ if 0 <= idx < len(sorted_options):
109
+ selected.add(sorted_options[idx])
110
+ else:
111
+ print(f"无效的选项编号: {idx + 1}")
112
+ continue
113
+ return selected
114
+ except ValueError:
115
+ print("请输入有效的数字编号。")
116
+
117
+ def get_tag_type_choice() -> str:
118
+ """获取用户选择的标签类型"""
119
+ tag_types = list(ModelFilter().tag_names.keys())
120
+ while True:
121
+ try:
122
+ choice = input("\n请选择标签类型编号(直接回车开始筛选):").strip()
123
+ if not choice:
124
+ return ""
125
+
126
+ idx = int(choice) - 1
127
+ if 0 <= idx < len(tag_types):
128
+ return tag_types[idx]
129
+ else:
130
+ print("无效的选项编号,请重试。")
131
+ except ValueError:
132
+ print("请输入有效的数字编号。")
133
+
134
+ def main():
135
+ print("欢迎使用模型筛选工具!")
136
+ model_filter = ModelFilter()
137
+ filters = {}
138
+ while True:
139
+ # 显示标签类型选项
140
+ model_filter.print_tag_type_options()
141
+
142
+ # 获取用户选择的标签类型
143
+ tag_type = get_tag_type_choice()
144
+ if not tag_type:
145
+ break
146
+
147
+ # 显示所选标签类型的可用选项
148
+ model_filter.print_tag_options(tag_type)
149
+
150
+ # 获取用户选择的标签
151
+ selected = get_user_input(
152
+ f"选择{model_filter.tag_names[tag_type]}标签",
153
+ model_filter.all_tags[tag_type]
154
+ )
155
+
156
+ if selected:
157
+ filters[tag_type] = selected
158
+
159
+ # 筛选并显示结果
160
+ filtered_models = model_filter.filter_models(filters)
161
+ model_filter.print_models(filtered_models)
162
+ # 询问是否继续
163
+ if input("\n是否继续筛选?(y/n): ").lower() == 'y':
164
+ main()
165
+ else:
166
+ print("\n感谢使用!再见!")
167
+ if __name__ == "__main__":
168
+ main()
models.json ADDED
@@ -0,0 +1,368 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "models": [
3
+ {
4
+ "name": "Clone-detection-BigCloneBench",
5
+ "tags": {
6
+ "data_type": ["code"],
7
+ "task_type": ["classification", "similarity"],
8
+ "domain": ["code_clone_detection"],
9
+ "input_type": "code_pair",
10
+ "output_type": "binary"
11
+ },
12
+ "original_path": "Code-Code/Clone-detection-BigCloneBench",
13
+ "description": "基于大规模代码克隆基准数据集的代码克隆检测模型,任务是进行二元分类(0/1),其中1代表语义等价,0代表其他情况。",
14
+ "dataset": "BigCloneBench数据集",
15
+ "epoch": "待上传"
16
+ },
17
+ {
18
+ "name": "Clone-detection-POJ-104",
19
+ "tags": {
20
+ "data_type": ["code"],
21
+ "task_type": ["retrieval", "similarity"],
22
+ "domain": ["code_clone_detection"],
23
+ "input_type": "code",
24
+ "output_type": "code_ranking"
25
+ },
26
+ "original_path": "Code-Code/Clone-detection-POJ-104",
27
+ "description": "基于POJ-104数据集的代码克隆检测模型,任务是识别不同编程题目中相似的代码实现,给定一段代码和一组候选代码,任务是返回具有相同语义的Top K个代码",
28
+ "dataset": "POJ-104编程题目数据集",
29
+ "epoch": "待上传"
30
+ },
31
+ {
32
+ "name": "CodeCompletion-token",
33
+ "tags": {
34
+ "data_type": ["code"],
35
+ "task_type": ["generation", "completion"],
36
+ "domain": ["code_completion"],
37
+ "input_type": "code_tokens",
38
+ "output_type": "code_tokens"
39
+ },
40
+ "original_path": "Code-Code/CodeCompletion-token",
41
+ "description": "基于token级别的代码自动补全模型",
42
+ "dataset": "Java代码token序列数据集",
43
+ "epoch": "待上传"
44
+ },
45
+ {
46
+ "name": "Defect-detection",
47
+ "tags": {
48
+ "data_type": ["code"],
49
+ "task_type": ["classification"],
50
+ "domain": ["code_defect_detection"],
51
+ "input_type": "code",
52
+ "output_type": "binary"
53
+ },
54
+ "original_path": "Code-Code/Defect-detection",
55
+ "description": "代码缺陷检测模型,通过分析代码来识别潜在的缺陷和错误(进行二元分类(0/1))",
56
+ "dataset": "包含缺陷标注的C语言代码数据集",
57
+ "epoch": "待上传"
58
+ },
59
+ {
60
+ "name": "code-refinement",
61
+ "tags": {
62
+ "data_type": ["code"],
63
+ "task_type": ["generation", "optimization"],
64
+ "domain": ["code_optimization"],
65
+ "input_type": "code",
66
+ "output_type": "code"
67
+ },
68
+ "original_path": "Code-Code/code-refinement",
69
+ "description": "代码优化模型",
70
+ "dataset": "代码优化前后对数据集(C语言)",
71
+ "epoch": "待上传"
72
+ },
73
+ {
74
+ "name": "code-to-text",
75
+ "tags": {
76
+ "data_type": ["code", "text"],
77
+ "task_type": ["generation", "translation"],
78
+ "domain": ["code_documentation"],
79
+ "input_type": "code",
80
+ "output_type": "text"
81
+ },
82
+ "original_path": "Code-Text/code-to-text",
83
+ "description": "代码到自然语言的转换模型",
84
+ "dataset": "多语言代码-文本对数据集",
85
+ "epoch": "待上传"
86
+ },
87
+ {
88
+ "name": "NL-code-search-Adv",
89
+ "tags": {
90
+ "data_type": ["code", "text"],
91
+ "task_type": ["retrieval", "search"],
92
+ "domain": ["code_search"],
93
+ "input_type": "text",
94
+ "output_type": "code"
95
+ },
96
+ "original_path": "Text-code/NL-code-search-Adv",
97
+ "description": "高级自然语言代码搜索模型,通过计算自然语言查询与代码片段之间的相似性来实现代码搜索",
98
+ "dataset": "自然语言-(python)代码对数据集",
99
+ "epoch": "待上传"
100
+ },
101
+ {
102
+ "name": "NL-code-search-WebQuery",
103
+ "tags": {
104
+ "data_type": ["code", "text"],
105
+ "task_type": ["retrieval", "search"],
106
+ "domain": ["code_search"],
107
+ "input_type": "text",
108
+ "output_type": "code"
109
+ },
110
+ "original_path": "Text-code/NL-code-search-WebQuery",
111
+ "description": "基于Web查询的代码搜索模型,该模型通过编码器处理代码和自然语言输入,并利用多层感知器(MLP)来计算相似性得分",
112
+ "dataset": "Web查询-代码对数据集(CodeSearchNet数据集和CoSQA数据集(python))",
113
+ "epoch": "待上传"
114
+ },
115
+ {
116
+ "name": "text-to-code",
117
+ "tags": {
118
+ "data_type": ["code", "text"],
119
+ "task_type": ["generation"],
120
+ "domain": ["code_generation"],
121
+ "input_type": "text",
122
+ "output_type": "code"
123
+ },
124
+ "original_path": "Text-code/text-to-code",
125
+ "description": "自然语言到代码的生成模型",
126
+ "dataset": "文本描述-代码(c语言)对数据集",
127
+ "epoch": "待上传"
128
+ },
129
+ {
130
+ "name": "GraphMAE_QM9",
131
+ "tags": {
132
+ "data_type": ["graph"],
133
+ "task_type": ["representation_learning", "autoencoder"],
134
+ "domain": ["molecular_property"],
135
+ "input_type": "molecular_graph",
136
+ "output_type": "graph_embedding"
137
+ },
138
+ "original_path": "Graph/GraphMAE_QM9",
139
+ "description": "在QM9数据集上训练的图掩码自编码器,通过对分子图中的原子的坐标以及类型进行预测实现自监督训练",
140
+ "dataset": "分子属性预测数据集",
141
+ "epoch": "待上传"
142
+ },
143
+ {
144
+ "name": "AlexNet",
145
+ "tags": {
146
+ "data_type": ["image"],
147
+ "task_type": ["classification"],
148
+ "domain": ["computer_vision"],
149
+ "input_type": "image",
150
+ "output_type": "class_label"
151
+ },
152
+ "original_path": "Image/AlexNet",
153
+ "description": "2012年获得ImageNet冠军的经典模型,首次证明了深度学习在图像识别上的强大能力。",
154
+ "dataset": "CIFAR-10数据集",
155
+ "epoch": "待补充"
156
+ },
157
+ {
158
+ "name": "DenseNet",
159
+ "tags": {
160
+ "data_type": ["image"],
161
+ "task_type": ["classification"],
162
+ "domain": ["computer_vision"],
163
+ "input_type": "image",
164
+ "output_type": "class_label"
165
+ },
166
+ "original_path": "Image/DenseNet",
167
+ "description": "每一层都直接与其他所有层相连,像搭积木一样层层堆叠,可以更好地学习图像特征。",
168
+ "dataset": "CIFAR-10数据集",
169
+ "epoch": "待补充"
170
+ },
171
+ {
172
+ "name": "EfficientNet",
173
+ "tags": {
174
+ "data_type": ["image"],
175
+ "task_type": ["classification"],
176
+ "domain": ["computer_vision"],
177
+ "input_type": "image",
178
+ "output_type": "class_label"
179
+ },
180
+ "original_path": "Image/EfficientNet",
181
+ "description": "通过平衡网络的深度、宽度和图像分辨率,用更少的计算量达到更好的效果。",
182
+ "dataset": "CIFAR-10数据集",
183
+ "epoch": "待补充"
184
+ },
185
+ {
186
+ "name": "GoogLeNet",
187
+ "tags": {
188
+ "data_type": ["image"],
189
+ "task_type": ["classification"],
190
+ "domain": ["computer_vision"],
191
+ "input_type": "image",
192
+ "output_type": "class_label"
193
+ },
194
+ "original_path": "Image/GoogLeNet",
195
+ "description": "谷歌开发的模型,像多个眼睛同时看图片的不同部分,既省资源又准确。",
196
+ "dataset": "CIFAR-10数据集",
197
+ "epoch": "待补充"
198
+ },
199
+ {
200
+ "name": "LeNet5",
201
+ "tags": {
202
+ "data_type": ["image"],
203
+ "task_type": ["classification"],
204
+ "domain": ["computer_vision"],
205
+ "input_type": "image",
206
+ "output_type": "class_label"
207
+ },
208
+ "original_path": "Image/LeNet5",
209
+ "description": "深度学习领域的开山之作,虽然简单但奠定了现代CNN的基础架构。",
210
+ "dataset": "CIFAR-10数据集",
211
+ "epoch": "待补充"
212
+ },
213
+ {
214
+ "name": "MobileNetv1",
215
+ "tags": {
216
+ "data_type": ["image"],
217
+ "task_type": ["classification"],
218
+ "domain": ["computer_vision", "mobile_computing"],
219
+ "input_type": "image",
220
+ "output_type": "class_label"
221
+ },
222
+ "original_path": "Image/MobileNetv1",
223
+ "description": "专门为手机设计的轻量级模型,用特殊的卷积方式减少计算量。",
224
+ "dataset": "CIFAR-10数据集",
225
+ "epoch": "待补充"
226
+ },
227
+ {
228
+ "name": "MobileNetv2",
229
+ "tags": {
230
+ "data_type": ["image"],
231
+ "task_type": ["classification"],
232
+ "domain": ["computer_vision", "mobile_computing"],
233
+ "input_type": "image",
234
+ "output_type": "class_label"
235
+ },
236
+ "original_path": "Image/MobileNetv2",
237
+ "description": "MobileNet的升级版,增加了特征复用机制,性能更好。",
238
+ "dataset": "CIFAR-10数据集",
239
+ "epoch": "待补充"
240
+ },
241
+ {
242
+ "name": "MobileNetv3",
243
+ "tags": {
244
+ "data_type": ["image"],
245
+ "task_type": ["classification"],
246
+ "domain": ["computer_vision", "mobile_computing"],
247
+ "input_type": "image",
248
+ "output_type": "class_label"
249
+ },
250
+ "original_path": "Image/MobileNetv3",
251
+ "description": "结合自动搜索技术的新版本,自动找到最适合手机的网络结构。",
252
+ "dataset": "CIFAR-10数据集",
253
+ "epoch": "待补充"
254
+ },
255
+ {
256
+ "name": "ResNet",
257
+ "tags": {
258
+ "data_type": ["image"],
259
+ "task_type": ["classification"],
260
+ "domain": ["computer_vision"],
261
+ "input_type": "image",
262
+ "output_type": "class_label"
263
+ },
264
+ "original_path": "Image/ResNet",
265
+ "description": "通过特殊的快捷连接解决深层网络训练难的问题,可以训练超级深的网络。",
266
+ "dataset": "CIFAR-10数据集",
267
+ "epoch": "待补充"
268
+ },
269
+ {
270
+ "name": "SENet",
271
+ "tags": {
272
+ "data_type": ["image"],
273
+ "task_type": ["classification"],
274
+ "domain": ["computer_vision"],
275
+ "input_type": "image",
276
+ "output_type": "class_label"
277
+ },
278
+ "original_path": "Image/SENet",
279
+ "description": "为网络添加了注意力机制,让模型能够关注图片中重要的部分。",
280
+ "dataset": "CIFAR-10数据集",
281
+ "epoch": "待补充"
282
+ },
283
+ {
284
+ "name": "ShuffleNet",
285
+ "tags": {
286
+ "data_type": ["image"],
287
+ "task_type": ["classification"],
288
+ "domain": ["computer_vision", "mobile_computing"],
289
+ "input_type": "image",
290
+ "output_type": "class_label"
291
+ },
292
+ "original_path": "Image/ShuffleNet",
293
+ "description": "通过巧妙地打乱和分组计算,实现了手机上的高效运行。",
294
+ "dataset": "CIFAR-10数据集",
295
+ "epoch": "待补充"
296
+ },
297
+ {
298
+ "name": "ShuffleNetv2",
299
+ "tags": {
300
+ "data_type": ["image"],
301
+ "task_type": ["classification"],
302
+ "domain": ["computer_vision", "mobile_computing"],
303
+ "input_type": "image",
304
+ "output_type": "class_label"
305
+ },
306
+ "original_path": "Image/ShuffleNetv2",
307
+ "description": "在原版基础上优化设计,速度更快,效果更好。",
308
+ "dataset": "CIFAR-10数据集",
309
+ "epoch": "待补充"
310
+ },
311
+ {
312
+ "name": "SwinTransformer",
313
+ "tags": {
314
+ "data_type": ["image"],
315
+ "task_type": ["classification"],
316
+ "domain": ["computer_vision", "transformer"],
317
+ "input_type": "image",
318
+ "output_type": "class_label"
319
+ },
320
+ "original_path": "Image/SwinTransformer",
321
+ "description": "把自然语言处理的先进技术用于图像,通过逐步关注图片不同区域来理解图像。",
322
+ "dataset": "CIFAR-10数据集",
323
+ "epoch": "待补充"
324
+ },
325
+ {
326
+ "name": "VGG",
327
+ "tags": {
328
+ "data_type": ["image"],
329
+ "task_type": ["classification"],
330
+ "domain": ["computer_vision"],
331
+ "input_type": "image",
332
+ "output_type": "class_label"
333
+ },
334
+ "original_path": "Image/VGG",
335
+ "description": "用统一的小型卷积核堆叠成深层网络,结构简单但效果好。",
336
+ "dataset": "CIFAR-10数据集",
337
+ "epoch": "待补充"
338
+ },
339
+ {
340
+ "name": "ViT",
341
+ "tags": {
342
+ "data_type": ["image"],
343
+ "task_type": ["classification"],
344
+ "domain": ["computer_vision", "transformer"],
345
+ "input_type": "image",
346
+ "output_type": "class_label"
347
+ },
348
+ "original_path": "Image/ViT",
349
+ "description": "把图片切成小块后像读文章一样处理,是一种全新的图像处理方式。",
350
+ "dataset": "CIFAR-10数据集",
351
+ "epoch": "待补充"
352
+ },
353
+ {
354
+ "name": "ZFNet",
355
+ "tags": {
356
+ "data_type": ["image"],
357
+ "task_type": ["classification"],
358
+ "domain": ["computer_vision"],
359
+ "input_type": "image",
360
+ "output_type": "class_label"
361
+ },
362
+ "original_path": "Image/ZFNet",
363
+ "description": "通过可视化研究改进的AlexNet,帮助人们理解网络是如何看图片的。",
364
+ "dataset": "CIFAR-10数据集",
365
+ "epoch": "待补充"
366
+ }
367
+ ]
368
+ }