|
import torch |
|
import torchvision |
|
import torchvision.transforms as transforms |
|
import os |
|
|
|
def get_cifar10_dataloaders(batch_size=128, num_workers=2, local_dataset_path=None,shuffle=True): |
|
"""获取CIFAR10数据集的数据加载器 |
|
|
|
Args: |
|
batch_size: 批次大小 |
|
num_workers: 数据加载的工作进程数 |
|
local_dataset_path: 本地数据集路径,如果提供则使用本地数据集,否则下载 |
|
|
|
Returns: |
|
trainloader: 训练数据加载器 |
|
testloader: 测试数据加载器 |
|
""" |
|
|
|
transform_train = transforms.Compose([ |
|
transforms.RandomCrop(32, padding=4), |
|
transforms.RandomHorizontalFlip(), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), |
|
]) |
|
|
|
transform_test = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), |
|
]) |
|
|
|
|
|
if local_dataset_path: |
|
print(f"使用本地数据集: {local_dataset_path}") |
|
download = False |
|
dataset_path = local_dataset_path |
|
else: |
|
print("未指定本地数据集路径,将下载数据集") |
|
download = True |
|
dataset_path = '../dataset' |
|
|
|
|
|
if not os.path.exists(dataset_path): |
|
os.makedirs(dataset_path) |
|
|
|
trainset = torchvision.datasets.CIFAR10( |
|
root=dataset_path, train=True, download=download, transform=transform_train) |
|
trainloader = torch.utils.data.DataLoader( |
|
trainset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) |
|
|
|
testset = torchvision.datasets.CIFAR10( |
|
root=dataset_path, train=False, download=download, transform=transform_test) |
|
testloader = torch.utils.data.DataLoader( |
|
testset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) |
|
|
|
return trainloader, testloader |
|
|
|
def get_mnist_dataloaders(batch_size=128, num_workers=2, local_dataset_path=None,shuffle=True): |
|
"""获取MNIST数据集的数据加载器 |
|
|
|
Args: |
|
batch_size: 批次大小 |
|
num_workers: 数据加载的工作进程数 |
|
local_dataset_path: 本地数据集路径,如果提供则使用本地数据集,否则下载 |
|
|
|
Returns: |
|
trainloader: 训练数据加载器 |
|
testloader: 测试数据加载器 |
|
""" |
|
|
|
transform_train = transforms.Compose([ |
|
transforms.RandomRotation(10), |
|
transforms.RandomAffine( |
|
degrees=0, |
|
translate=(0.1, 0.1), |
|
scale=(0.9, 1.1) |
|
), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.1307,), (0.3081,)) |
|
]) |
|
|
|
transform_test = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.1307,), (0.3081,)) |
|
]) |
|
|
|
|
|
if local_dataset_path: |
|
print(f"使用本地数据集: {local_dataset_path}") |
|
download = False |
|
dataset_path = local_dataset_path |
|
else: |
|
print("未指定本地数据集路径,将下载数据集") |
|
download = True |
|
dataset_path = '../dataset' |
|
|
|
|
|
if not os.path.exists(dataset_path): |
|
os.makedirs(dataset_path) |
|
|
|
trainset = torchvision.datasets.MNIST( |
|
root=dataset_path, train=True, download=download, transform=transform_train) |
|
trainloader = torch.utils.data.DataLoader( |
|
trainset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) |
|
|
|
testset = torchvision.datasets.MNIST( |
|
root=dataset_path, train=False, download=download, transform=transform_test) |
|
testloader = torch.utils.data.DataLoader( |
|
testset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers) |
|
|
|
return trainloader, testloader |
|
|