|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch |
|
from torch.autograd import Variable |
|
import copy |
|
class Seq2Seq(nn.Module): |
|
""" |
|
Build Seqence-to-Sequence. |
|
|
|
Parameters: |
|
|
|
* `encoder`- encoder of seq2seq model. e.g. roberta |
|
* `decoder`- decoder of seq2seq model. e.g. transformer |
|
* `config`- configuration of encoder model. |
|
* `beam_size`- beam size for beam search. |
|
* `max_length`- max length of target for beam search. |
|
* `sos_id`- start of symbol ids in target for beam search. |
|
* `eos_id`- end of symbol ids in target for beam search. |
|
""" |
|
def __init__(self, encoder,decoder,config,beam_size=None,max_length=None,sos_id=None,eos_id=None): |
|
super(Seq2Seq, self).__init__() |
|
self.encoder = encoder |
|
self.decoder=decoder |
|
self.config=config |
|
self.register_buffer("bias", torch.tril(torch.ones(2048, 2048))) |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.lsm = nn.LogSoftmax(dim=-1) |
|
self.tie_weights() |
|
|
|
self.beam_size=beam_size |
|
self.max_length=max_length |
|
self.sos_id=sos_id |
|
self.eos_id=eos_id |
|
|
|
def _tie_or_clone_weights(self, first_module, second_module): |
|
""" Tie or clone module weights depending of weither we are using TorchScript or not |
|
""" |
|
if self.config.torchscript: |
|
first_module.weight = nn.Parameter(second_module.weight.clone()) |
|
else: |
|
first_module.weight = second_module.weight |
|
|
|
def tie_weights(self): |
|
""" Make sure we are sharing the input and output embeddings. |
|
Export to TorchScript can't handle parameter sharing so we are cloning them instead. |
|
""" |
|
self._tie_or_clone_weights(self.lm_head, |
|
self.encoder.embeddings.word_embeddings) |
|
|
|
def forward(self, source_ids=None,source_mask=None,target_ids=None,target_mask=None,args=None): |
|
outputs = self.encoder(source_ids, attention_mask=source_mask) |
|
encoder_output = outputs[0].permute([1,0,2]).contiguous() |
|
if target_ids is not None: |
|
attn_mask=-1e4 *(1-self.bias[:target_ids.shape[1],:target_ids.shape[1]]) |
|
tgt_embeddings = self.encoder.embeddings(target_ids).permute([1,0,2]).contiguous() |
|
out = self.decoder(tgt_embeddings,encoder_output,tgt_mask=attn_mask,memory_key_padding_mask=(1-source_mask).bool()) |
|
hidden_states = torch.tanh(self.dense(out)).permute([1,0,2]).contiguous() |
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
active_loss = target_mask[..., 1:].ne(0).view(-1) == 1 |
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = target_ids[..., 1:].contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss(ignore_index=-1) |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1))[active_loss], |
|
shift_labels.view(-1)[active_loss]) |
|
|
|
outputs = loss,loss*active_loss.sum(),active_loss.sum() |
|
return outputs |
|
else: |
|
|
|
preds=[] |
|
zero=torch.cuda.LongTensor(1).fill_(0) |
|
for i in range(source_ids.shape[0]): |
|
context=encoder_output[:,i:i+1] |
|
context_mask=source_mask[i:i+1,:] |
|
beam = Beam(self.beam_size,self.sos_id,self.eos_id) |
|
input_ids=beam.getCurrentState() |
|
context=context.repeat(1, self.beam_size,1) |
|
context_mask=context_mask.repeat(self.beam_size,1) |
|
for _ in range(self.max_length): |
|
if beam.done(): |
|
break |
|
attn_mask=-1e4 *(1-self.bias[:input_ids.shape[1],:input_ids.shape[1]]) |
|
tgt_embeddings = self.encoder.embeddings(input_ids).permute([1,0,2]).contiguous() |
|
out = self.decoder(tgt_embeddings,context,tgt_mask=attn_mask,memory_key_padding_mask=(1-context_mask).bool()) |
|
out = torch.tanh(self.dense(out)) |
|
hidden_states=out.permute([1,0,2]).contiguous()[:,-1,:] |
|
out = self.lsm(self.lm_head(hidden_states)).data |
|
beam.advance(out) |
|
input_ids.data.copy_(input_ids.data.index_select(0, beam.getCurrentOrigin())) |
|
input_ids=torch.cat((input_ids,beam.getCurrentState()),-1) |
|
hyp= beam.getHyp(beam.getFinal()) |
|
pred=beam.buildTargetTokens(hyp)[:self.beam_size] |
|
pred=[torch.cat([x.view(-1) for x in p]+[zero]*(self.max_length-len(p))).view(1,-1) for p in pred] |
|
preds.append(torch.cat(pred,0).unsqueeze(0)) |
|
|
|
preds=torch.cat(preds,0) |
|
return preds |
|
|
|
def feature(self, source_ids,source_mask): |
|
outputs = self.encoder(source_ids, attention_mask=source_mask) |
|
return outputs.pooler_output |
|
|
|
|
|
class Beam(object): |
|
def __init__(self, size,sos,eos): |
|
self.size = size |
|
self.tt = torch.cuda |
|
|
|
self.scores = self.tt.FloatTensor(size).zero_() |
|
|
|
self.prevKs = [] |
|
|
|
self.nextYs = [self.tt.LongTensor(size) |
|
.fill_(0)] |
|
self.nextYs[0][0] = sos |
|
|
|
self._eos = eos |
|
self.eosTop = False |
|
|
|
self.finished = [] |
|
|
|
def getCurrentState(self): |
|
"Get the outputs for the current timestep." |
|
batch = self.tt.LongTensor(self.nextYs[-1]).view(-1, 1) |
|
return batch |
|
|
|
def getCurrentOrigin(self): |
|
"Get the backpointers for the current timestep." |
|
return self.prevKs[-1] |
|
|
|
def advance(self, wordLk): |
|
""" |
|
Given prob over words for every last beam `wordLk` and attention |
|
`attnOut`: Compute and update the beam search. |
|
|
|
Parameters: |
|
|
|
* `wordLk`- probs of advancing from the last step (K x words) |
|
* `attnOut`- attention at the last step |
|
|
|
Returns: True if beam search is complete. |
|
""" |
|
numWords = wordLk.size(1) |
|
|
|
|
|
if len(self.prevKs) > 0: |
|
beamLk = wordLk + self.scores.unsqueeze(1).expand_as(wordLk) |
|
|
|
|
|
for i in range(self.nextYs[-1].size(0)): |
|
if self.nextYs[-1][i] == self._eos: |
|
beamLk[i] = -1e20 |
|
else: |
|
beamLk = wordLk[0] |
|
flatBeamLk = beamLk.view(-1) |
|
bestScores, bestScoresId = flatBeamLk.topk(self.size, 0, True, True) |
|
|
|
self.scores = bestScores |
|
|
|
|
|
|
|
prevK = bestScoresId // numWords |
|
self.prevKs.append(prevK) |
|
self.nextYs.append((bestScoresId - prevK * numWords)) |
|
|
|
|
|
for i in range(self.nextYs[-1].size(0)): |
|
if self.nextYs[-1][i] == self._eos: |
|
s = self.scores[i] |
|
self.finished.append((s, len(self.nextYs) - 1, i)) |
|
|
|
|
|
if self.nextYs[-1][0] == self._eos: |
|
self.eosTop = True |
|
|
|
def done(self): |
|
return self.eosTop and len(self.finished) >=self.size |
|
|
|
def getFinal(self): |
|
if len(self.finished) == 0: |
|
self.finished.append((self.scores[0], len(self.nextYs) - 1, 0)) |
|
self.finished.sort(key=lambda a: -a[0]) |
|
if len(self.finished) != self.size: |
|
unfinished=[] |
|
for i in range(self.nextYs[-1].size(0)): |
|
if self.nextYs[-1][i] != self._eos: |
|
s = self.scores[i] |
|
unfinished.append((s, len(self.nextYs) - 1, i)) |
|
unfinished.sort(key=lambda a: -a[0]) |
|
self.finished+=unfinished[:self.size-len(self.finished)] |
|
return self.finished[:self.size] |
|
|
|
def getHyp(self, beam_res): |
|
""" |
|
Walk back to construct the full hypothesis. |
|
""" |
|
hyps=[] |
|
for _,timestep, k in beam_res: |
|
hyp = [] |
|
for j in range(len(self.prevKs[:timestep]) - 1, -1, -1): |
|
hyp.append(self.nextYs[j+1][k]) |
|
k = self.prevKs[j][k] |
|
hyps.append(hyp[::-1]) |
|
return hyps |
|
|
|
def buildTargetTokens(self, preds): |
|
sentence=[] |
|
for pred in preds: |
|
tokens = [] |
|
for tok in pred: |
|
if tok==self._eos: |
|
break |
|
tokens.append(tok) |
|
sentence.append(tokens) |
|
return sentence |
|
|
|
|