# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. import torch import torch.nn as nn import torch from torch.autograd import Variable import copy class Seq2Seq(nn.Module): """ Build Seqence-to-Sequence. Parameters: * `encoder`- encoder of seq2seq model. e.g. roberta * `decoder`- decoder of seq2seq model. e.g. transformer * `config`- configuration of encoder model. * `beam_size`- beam size for beam search. * `max_length`- max length of target for beam search. * `sos_id`- start of symbol ids in target for beam search. * `eos_id`- end of symbol ids in target for beam search. """ def __init__(self, encoder,decoder,config,beam_size=None,max_length=None,sos_id=None,eos_id=None): super(Seq2Seq, self).__init__() self.encoder = encoder self.decoder=decoder self.config=config self.register_buffer("bias", torch.tril(torch.ones(2048, 2048))) self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.lsm = nn.LogSoftmax(dim=-1) self.tie_weights() self.beam_size=beam_size self.max_length=max_length self.sos_id=sos_id self.eos_id=eos_id def _tie_or_clone_weights(self, first_module, second_module): """ Tie or clone module weights depending of weither we are using TorchScript or not """ if self.config.torchscript: first_module.weight = nn.Parameter(second_module.weight.clone()) else: first_module.weight = second_module.weight def tie_weights(self): """ Make sure we are sharing the input and output embeddings. Export to TorchScript can't handle parameter sharing so we are cloning them instead. """ self._tie_or_clone_weights(self.lm_head, self.encoder.embeddings.word_embeddings) def forward(self, source_ids=None,source_mask=None,target_ids=None,target_mask=None,args=None): outputs = self.encoder(source_ids, attention_mask=source_mask) encoder_output = outputs[0].permute([1,0,2]).contiguous() if target_ids is not None: attn_mask=-1e4 *(1-self.bias[:target_ids.shape[1],:target_ids.shape[1]]) tgt_embeddings = self.encoder.embeddings(target_ids).permute([1,0,2]).contiguous() out = self.decoder(tgt_embeddings,encoder_output,tgt_mask=attn_mask,memory_key_padding_mask=(1-source_mask).bool()) hidden_states = torch.tanh(self.dense(out)).permute([1,0,2]).contiguous() lm_logits = self.lm_head(hidden_states) # Shift so that tokens < n predict n active_loss = target_mask[..., 1:].ne(0).view(-1) == 1 shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = target_ids[..., 1:].contiguous() # Flatten the tokens loss_fct = nn.CrossEntropyLoss(ignore_index=-1) loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1))[active_loss], shift_labels.view(-1)[active_loss]) outputs = loss,loss*active_loss.sum(),active_loss.sum() return outputs else: #Predict preds=[] zero=torch.cuda.LongTensor(1).fill_(0) for i in range(source_ids.shape[0]): context=encoder_output[:,i:i+1] context_mask=source_mask[i:i+1,:] beam = Beam(self.beam_size,self.sos_id,self.eos_id) input_ids=beam.getCurrentState() context=context.repeat(1, self.beam_size,1) context_mask=context_mask.repeat(self.beam_size,1) for _ in range(self.max_length): if beam.done(): break attn_mask=-1e4 *(1-self.bias[:input_ids.shape[1],:input_ids.shape[1]]) tgt_embeddings = self.encoder.embeddings(input_ids).permute([1,0,2]).contiguous() out = self.decoder(tgt_embeddings,context,tgt_mask=attn_mask,memory_key_padding_mask=(1-context_mask).bool()) out = torch.tanh(self.dense(out)) hidden_states=out.permute([1,0,2]).contiguous()[:,-1,:] out = self.lsm(self.lm_head(hidden_states)).data beam.advance(out) input_ids.data.copy_(input_ids.data.index_select(0, beam.getCurrentOrigin())) input_ids=torch.cat((input_ids,beam.getCurrentState()),-1) hyp= beam.getHyp(beam.getFinal()) pred=beam.buildTargetTokens(hyp)[:self.beam_size] pred=[torch.cat([x.view(-1) for x in p]+[zero]*(self.max_length-len(p))).view(1,-1) for p in pred] preds.append(torch.cat(pred,0).unsqueeze(0)) preds=torch.cat(preds,0) return preds def feature(self, source_ids,source_mask): outputs = self.encoder(source_ids, attention_mask=source_mask) return outputs.pooler_output class Beam(object): def __init__(self, size,sos,eos): self.size = size self.tt = torch.cuda # The score for each translation on the beam. self.scores = self.tt.FloatTensor(size).zero_() # The backpointers at each time-step. self.prevKs = [] # The outputs at each time-step. self.nextYs = [self.tt.LongTensor(size) .fill_(0)] self.nextYs[0][0] = sos # Has EOS topped the beam yet. self._eos = eos self.eosTop = False # Time and k pair for finished. self.finished = [] def getCurrentState(self): "Get the outputs for the current timestep." batch = self.tt.LongTensor(self.nextYs[-1]).view(-1, 1) return batch def getCurrentOrigin(self): "Get the backpointers for the current timestep." return self.prevKs[-1] def advance(self, wordLk): """ Given prob over words for every last beam `wordLk` and attention `attnOut`: Compute and update the beam search. Parameters: * `wordLk`- probs of advancing from the last step (K x words) * `attnOut`- attention at the last step Returns: True if beam search is complete. """ numWords = wordLk.size(1) # Sum the previous scores. if len(self.prevKs) > 0: beamLk = wordLk + self.scores.unsqueeze(1).expand_as(wordLk) # Don't let EOS have children. for i in range(self.nextYs[-1].size(0)): if self.nextYs[-1][i] == self._eos: beamLk[i] = -1e20 else: beamLk = wordLk[0] flatBeamLk = beamLk.view(-1) bestScores, bestScoresId = flatBeamLk.topk(self.size, 0, True, True) self.scores = bestScores # bestScoresId is flattened beam x word array, so calculate which # word and beam each score came from prevK = bestScoresId // numWords self.prevKs.append(prevK) self.nextYs.append((bestScoresId - prevK * numWords)) for i in range(self.nextYs[-1].size(0)): if self.nextYs[-1][i] == self._eos: s = self.scores[i] self.finished.append((s, len(self.nextYs) - 1, i)) # End condition is when top-of-beam is EOS and no global score. if self.nextYs[-1][0] == self._eos: self.eosTop = True def done(self): return self.eosTop and len(self.finished) >=self.size def getFinal(self): if len(self.finished) == 0: self.finished.append((self.scores[0], len(self.nextYs) - 1, 0)) self.finished.sort(key=lambda a: -a[0]) if len(self.finished) != self.size: unfinished=[] for i in range(self.nextYs[-1].size(0)): if self.nextYs[-1][i] != self._eos: s = self.scores[i] unfinished.append((s, len(self.nextYs) - 1, i)) unfinished.sort(key=lambda a: -a[0]) self.finished+=unfinished[:self.size-len(self.finished)] return self.finished[:self.size] def getHyp(self, beam_res): """ Walk back to construct the full hypothesis. """ hyps=[] for _,timestep, k in beam_res: hyp = [] for j in range(len(self.prevKs[:timestep]) - 1, -1, -1): hyp.append(self.nextYs[j+1][k]) k = self.prevKs[j][k] hyps.append(hyp[::-1]) return hyps def buildTargetTokens(self, preds): sentence=[] for pred in preds: tokens = [] for tok in pred: if tok==self._eos: break tokens.append(tok) sentence.append(tokens) return sentence