|
|
|
|
|
|
|
import json |
|
from typing import Dict, List, Set |
|
|
|
class ModelFilter: |
|
def __init__(self, json_path: str = "models.json"): |
|
with open(json_path, 'r', encoding='utf-8') as f: |
|
self.data = json.load(f) |
|
self.models = self.data['models'] |
|
|
|
|
|
self.all_tags = { |
|
'data_type': set(), |
|
'task_type': set(), |
|
'domain': set(), |
|
'input_type': set(), |
|
'output_type': set() |
|
} |
|
|
|
|
|
self.tag_names = { |
|
'data_type': '数据类型', |
|
'task_type': '任务类型', |
|
'domain': '领域', |
|
'input_type': '输入类型', |
|
'output_type': '输出类型' |
|
} |
|
|
|
for model in self.models: |
|
tags = model['tags'] |
|
for tag_type in self.all_tags: |
|
if tag_type in tags: |
|
if isinstance(tags[tag_type], list): |
|
self.all_tags[tag_type].update(tags[tag_type]) |
|
else: |
|
self.all_tags[tag_type].add(tags[tag_type]) |
|
|
|
def print_tag_type_options(self): |
|
"""打印标签类型选项""" |
|
print("\n可选择的标签类型:") |
|
for i, (tag_type, name) in enumerate(self.tag_names.items(), 1): |
|
print(f"{i}. {name} ({tag_type})") |
|
|
|
def print_tag_options(self, tag_type: str): |
|
"""打印特定标签类型的可用选项""" |
|
print(f"\n=== {self.tag_names[tag_type]} ===") |
|
for i, tag in enumerate(sorted(self.all_tags[tag_type]), 1): |
|
print(f"{i}. {tag}") |
|
|
|
def filter_models(self, filters: Dict[str, Set[str]]) -> List[Dict]: |
|
"""根据筛选条件过滤模型""" |
|
filtered_models = [] |
|
|
|
for model in self.models: |
|
match = True |
|
for tag_type, filter_values in filters.items(): |
|
if not filter_values: |
|
continue |
|
|
|
model_tags = model['tags'].get(tag_type, []) |
|
if isinstance(model_tags, str): |
|
model_tags = [model_tags] |
|
|
|
|
|
if not set(model_tags) & filter_values: |
|
match = False |
|
break |
|
|
|
if match: |
|
filtered_models.append(model) |
|
|
|
return filtered_models |
|
|
|
def print_models(self, models: List[Dict]): |
|
"""打印模型信息""" |
|
if not models: |
|
print("\n没有找到匹配的模型。") |
|
return |
|
|
|
print(f"\n找到 {len(models)} 个匹配的模型:") |
|
for i, model in enumerate(models, 1): |
|
print(f"\n{i}. {model['name']}") |
|
print(f" 描述: {model['description']}") |
|
print(f" 数据集: {model['dataset']}") |
|
print(f" 标签:") |
|
for tag_type, tags in model['tags'].items(): |
|
if isinstance(tags, list): |
|
print(f" - {self.tag_names[tag_type]}: {', '.join(tags)}") |
|
else: |
|
print(f" - {self.tag_names[tag_type]}: {tags}") |
|
|
|
def get_user_input(prompt: str, valid_options: Set[str]) -> Set[str]: |
|
"""获取用户输入的标签""" |
|
print(f"\n{prompt}") |
|
print("请输入标签编号(多个标签用空格分隔,直接回车跳过):") |
|
while True: |
|
try: |
|
user_input = input().strip() |
|
if not user_input: |
|
return set() |
|
|
|
indices = [int(x) - 1 for x in user_input.split()] |
|
selected = set() |
|
sorted_options = sorted(valid_options) |
|
for idx in indices: |
|
if 0 <= idx < len(sorted_options): |
|
selected.add(sorted_options[idx]) |
|
else: |
|
print(f"无效的选项编号: {idx + 1}") |
|
continue |
|
return selected |
|
except ValueError: |
|
print("请输入有效的数字编号。") |
|
|
|
def get_tag_type_choice() -> str: |
|
"""获取用户选择的标签类型""" |
|
tag_types = list(ModelFilter().tag_names.keys()) |
|
while True: |
|
try: |
|
choice = input("\n请选择标签类型编号(直接回车开始筛选):").strip() |
|
if not choice: |
|
return "" |
|
|
|
idx = int(choice) - 1 |
|
if 0 <= idx < len(tag_types): |
|
return tag_types[idx] |
|
else: |
|
print("无效的选项编号,请重试。") |
|
except ValueError: |
|
print("请输入有效的数字编号。") |
|
|
|
def main(): |
|
print("欢迎使用模型筛选工具!") |
|
model_filter = ModelFilter() |
|
filters = {} |
|
while True: |
|
|
|
model_filter.print_tag_type_options() |
|
|
|
|
|
tag_type = get_tag_type_choice() |
|
if not tag_type: |
|
break |
|
|
|
|
|
model_filter.print_tag_options(tag_type) |
|
|
|
|
|
selected = get_user_input( |
|
f"选择{model_filter.tag_names[tag_type]}标签", |
|
model_filter.all_tags[tag_type] |
|
) |
|
|
|
if selected: |
|
filters[tag_type] = selected |
|
|
|
|
|
filtered_models = model_filter.filter_models(filters) |
|
model_filter.print_models(filtered_models) |
|
|
|
if input("\n是否继续筛选?(y/n): ").lower() == 'y': |
|
main() |
|
else: |
|
print("\n感谢使用!再见!") |
|
if __name__ == "__main__": |
|
main() |