aftdb / aftdb.py
Cyrile's picture
Update aftdb.py
5876e74 verified
raw
history blame
8.32 kB
import os
import json
import datasets
from PIL import Image
_DESCRIPTION = """
The Arxiv Figure Table Database (AFTdb) facilitates the linking of documentary
objects, such as figures and tables, with their captions. This enables a
comprehensive description of document-oriented images (excluding images from
cameras). For the table component, the character structure is preserved in
addition to the image of the table and its caption. This database is ideal
for multimodal processing of documentary images.
"""
_LICENSE = "apache-2.0"
_CITATION = """
@online{DeAFTdb,
AUTHOR = {Cyrile Delestre},
URL = {https://huggingface.co/datasets/cmarkea/aftdb},
YEAR = {2024},
KEYWORDS = {NLP ; Multimodal}
}
"""
_NB_TAR_FIGURE = [158, 4] # train, test
_NB_TAR_TABLE = [17, 1] # train, test
def extract_files_tar(all_path, data_dir, nb_files):
paths = [
os.path.join(data_dir, f"train-{ii:03d}.tar")
for ii in range(nb_files[0])
]
all_path['train'] += paths
paths = [
os.path.join(data_dir, f"test-{ii:03d}.tar")
for ii in range(nb_files[1])
]
all_path['test'] += paths
class AFTConfig(datasets.BuilderConfig):
"""Builder Config for AFTdb"""
def __init__(self, nb_files_figure, nb_files_table, **kwargs):
"""BuilderConfig for AFTdb."""
super().__init__(version=datasets.__version__, **kwargs)
self.nb_files_figure = nb_files_figure
self.nb_files_table = nb_files_table
class AFT_Dataset(datasets.GeneratorBasedBuilder):
"""Arxiv Figure Table (AFT) dataset"""
BUILDER_CONFIGS = [
AFTConfig(
name="figure",
description=(
"Dataset containing scientific article figures associated "
"with their caption, summary, and article title."
),
data_dir="./{type}",
nb_files_figure=_NB_TAR_FIGURE,
nb_files_table=None
),
AFTConfig(
name="table",
description=(
"Dataset containing tables in JPG image format from "
"scientific articles, along with the corresponding textual "
"representation of the table, including its caption, summary, "
"and article title."
),
data_dir="./{type}",
nb_files_figure=None,
nb_files_table=_NB_TAR_TABLE
),
AFTConfig(
name="figure+table",
description=(
"Dataset containing figure and tables in JPG image format "
"from scientific articles, along with the corresponding "
"textual representation of the table, including its caption, "
"summary, and article title."
),
data_dir="./{type}",
nb_files_figure=_NB_TAR_FIGURE,
nb_files_table=_NB_TAR_TABLE
)
]
DEFAULT_CONFIG_NAME = "figure+table"
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
'id': datasets.Value('string'),
'paper_id': datasets.Value('string'),
'type': datasets.Value('string'),
'authors': datasets.Value('string'),
'categories': datasets.Value('string'),
'title': {
'english': datasets.Value('string'),
'french': datasets.Value('string')
},
'summary': {
'english': datasets.Value('string'),
'french': datasets.Value('string')
},
'caption': {
'english': datasets.Value('string'),
'french': datasets.Value('string')
},
'image': datasets.Image(),
'data': datasets.Value('string'),
'newcommands': datasets.Sequence(datasets.Value('string'))
}
),
citation=_CITATION,
license=_LICENSE
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
all_path = dict(train=[], test=[])
if self.config.nb_files_figure:
extract_files_tar(
all_path=all_path,
data_dir=self.config.data_dir.format(type='figure'),
nb_files=self.config.nb_files_figure
)
if self.config.nb_files_table:
extract_files_tar(
all_path=all_path,
data_dir=self.config.data_dir.format(type='table'),
nb_files=self.config.nb_files_table
)
if dl_manager.is_streaming:
downloaded_files = dl_manager.download(all_path)
downloaded_files['train'] = [
dl_manager.iter_archive(ii) for ii in downloaded_files['train']
]
downloaded_files['test'] = [
dl_manager.iter_archive(ii) for ii in downloaded_files['test']
]
else:
downloaded_files = dl_manager.download_and_extract(all_path)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
'filepaths': downloaded_files['train'],
'is_streaming': dl_manager.is_streaming
}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepaths": downloaded_files['test'],
'is_streaming': dl_manager.is_streaming
}
)
]
def _generate_examples(self, filepaths, is_streaming):
if is_streaming:
_json, _jpg = False, False
for iter_tar in filepaths:
for path, file_obj in iter_tar:
if path.endswith('.json'):
metadata = json.load(file_obj)
_json = True
if path.endswith('.jpg'):
img = Image.open(file_obj)
_jpg = True
if _json and _jpg:
_json, _jpg = False, False
yield metadata['id'], {
'id': metadata['id'],
'paper_id': metadata['paper_id'],
'type': metadata['type'],
'authors': metadata['authors'],
'categories': metadata['categories'],
'title': metadata['title'],
'summary': metadata['summary'],
'caption': metadata['caption'],
'image': img,
'data': metadata['data'],
'newcommands': metadata['newcommands']
}
else:
for path in filepaths:
all_file = os.listdir(path)
all_id_obs = sorted(
set(map(lambda x: x.split('.')[0], all_file))
)
for id_obs in all_id_obs:
path_metadata = os.path.join(
path,
f"{id_obs}.metadata.json"
)
path_image = os.path.join(path, f"{id_obs}.image.jpg")
metadata = json.load(open(path_metadata, 'r'))
img = Image.open(path_image)
yield id_obs, {
'id': metadata['id'],
'paper_id': metadata['paper_id'],
'type': metadata['type'],
'authors': metadata['authors'],
'categories': metadata['categories'],
'title': metadata['title'],
'summary': metadata['summary'],
'caption': metadata['caption'],
'image': img,
'data': metadata['data'],
'newcommands': metadata['newcommands']
}