Datasets:
Size:
10B<n<100B
License:
license: cc-by-sa-4.0 | |
size_categories: | |
- 10B<n<100B | |
# XLM-R-BERTić dataset | |
## Composition and usage | |
This dataset contains 11.5 billion words and consists of the following splits: | |
* macocu_hbs | |
* hr_news | |
* bswac | |
* cc100_hr | |
* cc100_sr | |
* classla_sr | |
* classla_hr | |
* classla_bs | |
* cnrwac | |
* hrwac | |
* mC4 | |
* riznica | |
* srwac | |
The dataset was deduplicated with `onion` on the basis of 5-tuples of words with duplicate threshold set to 90%. | |
The entire dataset can be downloaded and used as follows: | |
```python | |
import datasets | |
dict_of_datasets = datasets.load_dataset("classla/xlm-r-bertic-data") | |
full_dataset = datasets.concatenate_datasets([d for d in dict_of_datasets.values()]) | |
``` | |
A single split can be taken as well, but note that this means all the splits will be downloaded and generated, which can take a long time: | |
```python | |
import datasets | |
riznica = datasets.load_dataset("classla/xlm-r-bertic-data", split="riznica") | |
``` | |
To circumvent this one option is using streaming: | |
```python | |
import datasets | |
riznica = datasets.load_dataset("classla/xlm-r-bertic-data", split="riznica", streaming=True) | |
for i in riznica.take(2): | |
print(i) | |
# Output: | |
# {'text': 'PRAGMATIČARI DOGMATI SANJARI'} | |
# {'text': 'Ivica Župan'} | |
``` | |
Read more on streaming [here](https://huggingface.co/docs/datasets/stream). |