nkjp-pos / README.md
asawczyn's picture
update dataset to new split
d90b6bd
|
raw
history blame
6.06 kB
---
annotations_creators:
- expert-generated
language_creators:
- other
languages:
- pl
licenses:
- gpl-3.0
multilinguality:
- monolingual
pretty_name: 'nkjp-pos'
size_categories:
- unknown
source_datasets:
- original
task_categories:
- structure-prediction
task_ids:
- part-of-speech-tagging
---
# nkjp-pos
## Description
NKJP-POS is a part the National Corpus of Polish (*Narodowy Korpus Języka Polskiego*). Its objective is part-of-speech tagging, e.g. nouns, verbs, adjectives, adverbs, etc. During the creation of corpus, texts of were annotated by humans from various sources, covering many domains and genres.
## Tasks (input, output and metrics)
Part-of-speech tagging (POS tagging) - tagging words in text with their corresponding part of speech.
**Input** ('*tokens'* column): sequence of tokens
**Output** ('*pos_tags'* column): sequence of predicted tokens’ classes (35 possible classes, described in detail in the annotation guidelines)
***example**:*
['Najwyraźniej', 'źle', 'ocenił', 'odległość', ',', 'bo', 'zderzył', 'się', 'z', 'jadącą', 'z', 'naprzeciwka', 'ciężarową', 'scanią', '.'] → ['qub', 'adv', 'praet', 'subst', 'interp', 'comp', 'praet', 'qub', 'prep', 'pact', 'prep', 'burk', 'adj', 'subst', 'interp']
Measurements:
## Data splits
| Subset | Cardinality (sentences) |
| ----------- | ----------------------: |
| train | 78219 |
| test | 7444 |
## Class distribution in train
| Class | Fraction of tokens |
|:--------|---------------------:|
| subst | 0.27345 |
| interp | 0.18101 |
| adj | 0.10611 |
| prep | 0.09567 |
| qub | 0.05670 |
| fin | 0.04939 |
| praet | 0.04409 |
| conj | 0.03711 |
| adv | 0.03512 |
| inf | 0.01591 |
| comp | 0.01476 |
| num | 0.01322 |
| ppron3 | 0.01111 |
| ppas | 0.01086 |
| ger | 0.00961 |
| brev | 0.00856 |
| ppron12 | 0.00670 |
| aglt | 0.00629 |
| pred | 0.00539 |
| pact | 0.00454 |
| bedzie | 0.00229 |
| pcon | 0.00218 |
| impt | 0.00203 |
| siebie | 0.00177 |
| imps | 0.00174 |
| interj | 0.00131 |
| xxx | 0.00070 |
| adjp | 0.00069 |
| winien | 0.00068 |
| adja | 0.00048 |
| pant | 0.00012 |
| burk | 0.00011 |
| numcol | 0.00011 |
| depr | 0.00010 |
| adjc | 0.00007 |
## Citation
```
@book{przepiorkowski_narodowy_2012,
title = {Narodowy korpus języka polskiego},
isbn = {978-83-01-16700-4},
language = {pl},
publisher = {Wydawnictwo Naukowe PWN},
editor = {Przepiórkowski, Adam and Bańko, Mirosław and Górski, Rafał L. and Lewandowska-Tomaszczyk, Barbara},
year = {2012}
}
```
## License
```
GNU GPL v.3
```
## Links
[HuggingFace](https://huggingface.co/datasets/clarin-pl/nkjp-pos)
[Source](http://clip.ipipan.waw.pl/NationalCorpusOfPolish)
[Paper](http://nkjp.pl/settings/papers/NKJP_ksiazka.pdf)
## Examples
### Loading
```python
from pprint import pprint
from datasets import load_dataset
dataset = load_dataset("clarin-pl/nkjp-pos")
pprint(dataset['train'][5000])
# {'id': '130-2-900005_morph_49.49-s',
# 'pos_tags': [16, 4, 3, 30, 12, 18, 3, 16, 14, 6, 14, 26, 1, 30, 12],
# 'tokens': ['Najwyraźniej',
# 'źle',
# 'ocenił',
# 'odległość',
# ',',
# 'bo',
# 'zderzył',
# 'się',
# 'z',
# 'jadącą',
# 'z',
# 'naprzeciwka',
# 'ciężarową',
# 'scanią',
# '.']}
```
### Evaluation
```python
import random
from pprint import pprint
from datasets import load_dataset, load_metric
dataset = load_dataset("clarin-pl/nkjp-pos")
references = dataset["test"]["pos_tags"]
# generate random predictions
predictions = [
[
random.randrange(dataset["train"].features["pos_tags"].feature.num_classes)
for _ in range(len(labels))
]
for labels in references
]
# transform to original names of labels
references_named = [
[dataset["train"].features["pos_tags"].feature.names[label] for label in labels]
for labels in references
]
predictions_named = [
[dataset["train"].features["pos_tags"].feature.names[label] for label in labels]
for labels in predictions
]
# transform to BILOU scheme
references_named = [
[f"U-{label}" if label != "O" else label for label in labels]
for labels in references_named
]
predictions_named = [
[f"U-{label}" if label != "O" else label for label in labels]
for labels in predictions_named
]
# utilise seqeval to evaluate
seqeval = load_metric("seqeval")
seqeval_score = seqeval.compute(
predictions=predictions_named,
references=references_named,
scheme="BILOU",
mode="strict",
)
pprint(seqeval_score, depth=1)
# {'adj': {...},
# 'adja': {...},
# 'adjc': {...},
# 'adjp': {...},
# 'adv': {...},
# 'aglt': {...},
# 'bedzie': {...},
# 'brev': {...},
# 'burk': {...},
# 'comp': {...},
# 'conj': {...},
# 'depr': {...},
# 'fin': {...},
# 'ger': {...},
# 'imps': {...},
# 'impt': {...},
# 'inf': {...},
# 'interj': {...},
# 'interp': {...},
# 'num': {...},
# 'numcol': {...},
# 'overall_accuracy': 0.027855061488566583,
# 'overall_f1': 0.027855061488566583,
# 'overall_precision': 0.027855061488566583,
# 'overall_recall': 0.027855061488566583,
# 'pact': {...},
# 'pant': {...},
# 'pcon': {...},
# 'ppas': {...},
# 'ppron12': {...},
# 'ppron3': {...},
# 'praet': {...},
# 'pred': {...},
# 'prep': {...},
# 'qub': {...},
# 'siebie': {...},
# 'subst': {...},
# 'winien': {...},
# 'xxx': {...}}
```