carlosdanielhernandezmena commited on
Commit
c9533a9
1 Parent(s): 2cc25d2

Adding files to the repo for the first time

Browse files
corpus/files/metadata_train.tsv ADDED
The diff for this file is too large to render. See raw diff
 
corpus/files/tars_train.paths ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ corpus/speech/train/argentina.tar.gz
2
+ corpus/speech/train/chile.tar.gz
3
+ corpus/speech/train/latin_america.tar.gz
4
+ corpus/speech/train/mexico.tar.gz
5
+ corpus/speech/train/spain.tar.gz
6
+ corpus/speech/train/unknown.tar.gz
corpus/speech/train/remove.txt ADDED
File without changes
voxforge_spanish.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from collections import defaultdict
2
+ import os
3
+ import json
4
+ import csv
5
+ import datasets
6
+
7
+ _NAME="voxforge_spanish"
8
+ _VERSION="1.0.0"
9
+
10
+ _DESCRIPTION = """
11
+ The VOXFORGE SPANISH CORPUS has a duration of 49 hours and it is constituted by read speech
12
+ recorded by more than 2 thousand speakers. Most of the speakers contribute with 10 recordings
13
+ of approximately 10 seconds of duration each.
14
+ """
15
+
16
+ _CITATION = """
17
+ @misc{menavoxforgespanish2017,
18
+ title={VOXFORGE SPANISH CORPUS: Audio and Transcripts in Spanish with a CIEMPIESS Corpus style, taken from voxforge.org},
19
+ author={Hernandez Mena, Carlos Daniel},
20
+ year={2017},
21
+ url={https://huggingface.co/ciempiess/voxforge_spanish},
22
+ }
23
+ """
24
+
25
+ _HOMEPAGE = "https://huggingface.co/ciempiess/voxforge_spanish"
26
+
27
+ _LICENSE = "GPLv3, See https://www.gnu.org/licenses/gpl.txt"
28
+
29
+ _BASE_DATA_DIR = "corpus/"
30
+ _METADATA_TRAIN = os.path.join(_BASE_DATA_DIR,"files", "metadata_train.tsv")
31
+
32
+ _TARS_TRAIN = os.path.join(_BASE_DATA_DIR,"files", "tars_train.paths")
33
+
34
+ class VoxforgeSpanishConfig(datasets.BuilderConfig):
35
+ """BuilderConfig for VOXFORGE SPANISH CORPUS"""
36
+
37
+ def __init__(self, name, **kwargs):
38
+ name=_NAME
39
+ super().__init__(name=name, **kwargs)
40
+
41
+ class VoxforgeSpanish(datasets.GeneratorBasedBuilder):
42
+ """VOXFORGE SPANISH CORPUS"""
43
+
44
+ VERSION = datasets.Version(_VERSION)
45
+ BUILDER_CONFIGS = [
46
+ VoxforgeSpanishConfig(
47
+ name=_NAME,
48
+ version=datasets.Version(_VERSION),
49
+ )
50
+ ]
51
+
52
+ def _info(self):
53
+ features = datasets.Features(
54
+ {
55
+ "audio_id": datasets.Value("string"),
56
+ "audio": datasets.Audio(sampling_rate=16000),
57
+ "speaker_id": datasets.Value("string"),
58
+ "country": datasets.Value("string"),
59
+ "gender": datasets.Value("string"),
60
+ "duration": datasets.Value("float32"),
61
+ "normalized_text": datasets.Value("string"),
62
+ }
63
+ )
64
+ return datasets.DatasetInfo(
65
+ description=_DESCRIPTION,
66
+ features=features,
67
+ homepage=_HOMEPAGE,
68
+ license=_LICENSE,
69
+ citation=_CITATION,
70
+ )
71
+
72
+ def _split_generators(self, dl_manager):
73
+
74
+ metadata_train=dl_manager.download_and_extract(_METADATA_TRAIN)
75
+
76
+ tars_train=dl_manager.download_and_extract(_TARS_TRAIN)
77
+
78
+ hash_tar_files=defaultdict(dict)
79
+
80
+ with open(tars_train,'r') as f:
81
+ hash_tar_files['train']=[path.replace('\n','') for path in f]
82
+
83
+ hash_meta_paths={"train":metadata_train}
84
+ audio_paths = dl_manager.download(hash_tar_files)
85
+
86
+ splits=["train"]
87
+ local_extracted_audio_paths = (
88
+ dl_manager.extract(audio_paths) if not dl_manager.is_streaming else
89
+ {
90
+ split:[None] * len(audio_paths[split]) for split in splits
91
+ }
92
+ )
93
+
94
+ return [
95
+ datasets.SplitGenerator(
96
+ name=datasets.Split.TRAIN,
97
+ gen_kwargs={
98
+ "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["train"]],
99
+ "local_extracted_archives_paths": local_extracted_audio_paths["train"],
100
+ "metadata_paths": hash_meta_paths["train"],
101
+ }
102
+ ),
103
+ ]
104
+
105
+ def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):
106
+
107
+ features = ["speaker_id","country","gender","duration","normalized_text"]
108
+
109
+ with open(metadata_paths) as f:
110
+ metadata = {x["audio_id"]: x for x in csv.DictReader(f, delimiter="\t")}
111
+
112
+ for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths):
113
+ for audio_filename, audio_file in audio_archive:
114
+ audio_id =os.path.splitext(os.path.basename(audio_filename))[0]
115
+ path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename
116
+
117
+ yield audio_id, {
118
+ "audio_id": audio_id,
119
+ **{feature: metadata[audio_id][feature] for feature in features},
120
+ "audio": {"path": path, "bytes": audio_file.read()},
121
+ }