a-number
stringlengths 7
7
| sequence
sequencelengths 1
377
| description
stringlengths 3
852
|
---|---|---|
A361101 | [
"1",
"2",
"1",
"3",
"2",
"1",
"4",
"1",
"5",
"1",
"6",
"2",
"4",
"4",
"4",
"4",
"5",
"3",
"6",
"4",
"5",
"3",
"6",
"4",
"5",
"3",
"6",
"5",
"3",
"7",
"1",
"8",
"2",
"6",
"5",
"3",
"8",
"2",
"9",
"1",
"10",
"2",
"9",
"1",
"11",
"4",
"6",
"5",
"3",
"8",
"2",
"9",
"1",
"12",
"1",
"13",
"1",
"14",
"1",
"15",
"1",
"16",
"1",
"17",
"1",
"18",
"1",
"19",
"3",
"8",
"2",
"10",
"2",
"11",
"4",
"6",
"6",
"6",
"8",
"2",
"20",
"3",
"8",
"3",
"8",
"3"
] | a(n) is the smallest positive number not among the terms in a(1..n-1) with index a(n-1)*k for any integer k; a(1)=1. |
A361102 | [
"1",
"6",
"10",
"12",
"14",
"15",
"18",
"20",
"21",
"22",
"24",
"26",
"28",
"30",
"33",
"34",
"35",
"36",
"38",
"39",
"40",
"42",
"44",
"45",
"46",
"48",
"50",
"51",
"52",
"54",
"55",
"56",
"57",
"58",
"60",
"62",
"63",
"65",
"66",
"68",
"69",
"70",
"72",
"74",
"75",
"76",
"77",
"78",
"80",
"82",
"84",
"85",
"86",
"87",
"88",
"90",
"91",
"92",
"93",
"94",
"95",
"96",
"98",
"99",
"100",
"102",
"104",
"105",
"106",
"108",
"110",
"111",
"112"
] | 1 together with numbers having at least two distinct prime factors. |
A361103 | [
"1",
"2",
"3",
"6",
"11",
"14",
"10",
"7",
"5",
"16",
"19",
"28",
"20",
"23",
"9",
"24",
"4",
"27",
"32",
"18",
"15",
"31",
"36",
"34",
"40",
"35",
"39",
"30",
"44",
"68",
"8",
"52",
"42",
"48",
"64",
"51",
"26",
"22",
"72",
"56",
"41",
"47",
"76",
"55",
"46",
"43",
"12",
"80",
"60",
"59",
"63",
"38",
"84",
"49",
"88",
"87",
"21",
"92",
"50",
"96",
"33",
"91",
"67",
"13",
"71",
"95",
"100",
"53",
"104",
"99",
"75",
"54",
"112",
"108"
] | a(n) = k such that A360519(k) = A361102(n), or -1 if A361102(n) never appears in A360519. |
A361104 | [
"1",
"2",
"3",
"17",
"9",
"4",
"8",
"31",
"15",
"7",
"5",
"47",
"64",
"6",
"21",
"10",
"96",
"20",
"11",
"13",
"57",
"38",
"14",
"16",
"79",
"37",
"18",
"12",
"160",
"28",
"22",
"19",
"61",
"24",
"26",
"23",
"131",
"52",
"27",
"25",
"41",
"33",
"46",
"29",
"77",
"45",
"42",
"34",
"54",
"59",
"36",
"32",
"68",
"72",
"44",
"40",
"104",
"82",
"50",
"49",
"75",
"111",
"51",
"35",
"98",
"143",
"63",
"30",
"85"
] | a(n) = k such that A361103(k-1) = n, or -1 if n never appears in A361103. |
A361105 | [
"1",
"88",
"92",
"112",
"116",
"172",
"268",
"272",
"324",
"17242",
"18650",
"43208",
"55828",
"192434",
"1497756"
] | Fixed points in A360519. |
A361106 | [
"12",
"4565",
"6402",
"12255",
"20112",
"21421",
"24818",
"28859",
"28924",
"29257",
"31026",
"31207",
"34856",
"36933",
"43614",
"49287",
"51164",
"51869",
"59526",
"60503",
"62984",
"65273",
"70478",
"75659",
"76632",
"78501",
"84754",
"86195",
"90824",
"92301",
"95598",
"103451",
"114460",
"115025",
"115890",
"116995",
"117608",
"118021",
"119994",
"121439",
"123892"
] | Numbers k such that w(k), w(k+1), and w(k+2) are all odd, where w is A360519. |
A361107 | [
"1",
"6",
"10",
"35",
"55",
"77",
"99",
"143",
"221",
"235",
"301",
"329",
"371",
"391",
"497",
"511",
"623",
"1243",
"1253",
"1379",
"1393",
"1799",
"1837",
"1969",
"2513",
"2629",
"3353",
"3493",
"3601",
"3983",
"6259",
"8063",
"10417",
"12991",
"13453",
"16003",
"17413",
"21967",
"23089",
"27049",
"32329",
"33737",
"40079",
"60073",
"70103",
"73411",
"79673",
"105131",
"116677",
"117799",
"119933",
"124619",
"128227",
"130537",
"149083"
] | Records in A360519. |
A361108 | [
"1",
"2",
"3",
"4",
"8",
"12",
"13",
"17",
"29",
"74",
"85",
"97",
"105",
"110",
"145",
"149",
"186",
"230",
"369",
"401",
"442",
"521",
"689",
"741",
"745",
"989",
"993",
"1062",
"1129",
"1153",
"1274",
"1493",
"1937",
"2722",
"2818",
"2842",
"3237",
"4097",
"4301",
"5939",
"6006",
"7516",
"7560",
"9439",
"12984",
"14141",
"14748",
"16480",
"21610",
"21818",
"22226",
"23110",
"23778",
"24210",
"27607",
"29330",
"31392",
"35201",
"43306",
"44199",
"47795"
] | Indices of records in A360519. |
A361109 | [
"6",
"10",
"12",
"12",
"12",
"14",
"14",
"14",
"14",
"14",
"15",
"15",
"15",
"22",
"22",
"24",
"24",
"24",
"26",
"26",
"26",
"26",
"26",
"26",
"26",
"26",
"26",
"38",
"38",
"38",
"38",
"44",
"44",
"44",
"44",
"46",
"46",
"46",
"46",
"52",
"52",
"52",
"52",
"54",
"54",
"54",
"54",
"54",
"54",
"54",
"54",
"54",
"54",
"54",
"54",
"54",
"54",
"54",
"54",
"54",
"54",
"54",
"54",
"54",
"54"
] | After A360519(n) has been found, a(n) is the smallest member of C (A361102) that is missing from A360519. |
A361110 | [
"1",
"2",
"3",
"3",
"3",
"4",
"4",
"4",
"4",
"4",
"5",
"5",
"5",
"9",
"9",
"10",
"10",
"10",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"11",
"18",
"18",
"18",
"18",
"22",
"22",
"22",
"22",
"24",
"24",
"24",
"24",
"28",
"28",
"28",
"28",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"29",
"38",
"38"
] | a(n) indicates the index of A361109 in C (A361102). |
A361111 | [
"0",
"3",
"5",
"12",
"10",
"3",
"5",
"20",
"18",
"3",
"9",
"24",
"18",
"6",
"5",
"17",
"48",
"34",
"3",
"9",
"40",
"36",
"7",
"65",
"72",
"10",
"3",
"33",
"96",
"66",
"11",
"129",
"132",
"6",
"3",
"17",
"80",
"68",
"5",
"257",
"258",
"130",
"129",
"33",
"34",
"6",
"13",
"513",
"514",
"1026",
"1025",
"9",
"14",
"2050",
"2049",
"65",
"66",
"4098",
"4097",
"5",
"260",
"264",
"11",
"7"
] | The binary expansion of a(n) specifies which primes divide A360519(n). |
A361112 | [
"77",
"5775",
"7917",
"14745",
"23925",
"25425",
"29435",
"34035",
"34125",
"34485",
"36495",
"36705",
"40803",
"43275",
"50925",
"57375",
"59565",
"60345",
"68859",
"70035",
"72825",
"75525",
"81435",
"87405",
"141495",
"90705",
"97695",
"99267",
"104355",
"106035",
"109935",
"118755",
"143769",
"131745",
"132765",
"134055",
"134805",
"135225",
"138525",
"139065",
"141945"
] | Numbers that begin a run of 3 consecutive odd valued terms in A360519. |
A361113 | [
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0"
] | a(n)=1 if A361102(n) is even, otherwise 0. |
A361114 | [
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1"
] | a(n)=1 if A361102(n) is odd, otherwise 0. |
A361115 | [
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0"
] | a(n)=1 if A361102(n) is divisible by 3, otherwise 0. |
A361116 | [
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1"
] | a(n)=0 if A361102(n) is divisible by 3, otherwise 1. |
A361117 | [
"2",
"2",
"3",
"4",
"8",
"17",
"24",
"32",
"40",
"48",
"50",
"54",
"58",
"69",
"73",
"104",
"120",
"122",
"126",
"137",
"141",
"160",
"164",
"176",
"200",
"202",
"206",
"208",
"210",
"229",
"252",
"260",
"276",
"280",
"304",
"308",
"312",
"332",
"336",
"344",
"361",
"376",
"388",
"392",
"400",
"404",
"428",
"452",
"468",
"472",
"480",
"496",
"500",
"508",
"520",
"532"
] | a(n) is the least k such that A360519(k) is divisible by the n-th prime number. |
A361118 | [
"1",
"2",
"5",
"7",
"3",
"4",
"5",
"11",
"3",
"2",
"7",
"11",
"3",
"5",
"2",
"11",
"13",
"3",
"4",
"7",
"13",
"5",
"2",
"17",
"7",
"9",
"2",
"13",
"17",
"3",
"2",
"19",
"5",
"3",
"4",
"11",
"17",
"5",
"2",
"23",
"3",
"19",
"4",
"13",
"3",
"5",
"2",
"29",
"3",
"31",
"2",
"7",
"3",
"37",
"2",
"17",
"3",
"41",
"2",
"5",
"23",
"7",
"12",
"5",
"29",
"7",
"2",
"3",
"43",
"5",
"2",
"3",
"47",
"5",
"2",
"3",
"7",
"19",
"2"
] | a(n) = gcd(A360519(n), A360519(n+1)). |
A361119 | [
"1",
"2",
"2",
"5",
"3",
"2",
"2",
"5",
"3",
"2",
"2",
"7",
"3",
"3",
"2",
"2",
"11",
"3",
"2",
"2",
"7",
"5",
"2",
"2",
"7",
"3",
"2",
"2",
"13",
"3",
"2",
"2",
"5",
"3",
"2",
"2",
"11",
"5",
"2",
"2",
"3",
"3",
"2",
"2",
"3",
"3",
"2",
"2",
"3",
"3",
"2",
"2",
"3",
"3",
"2",
"2",
"3",
"3",
"2",
"2",
"5",
"7",
"2",
"2",
"5",
"7",
"2",
"2",
"3",
"5",
"2",
"2",
"3",
"5",
"2",
"2",
"3",
"7",
"2",
"2",
"3",
"5",
"2",
"2",
"7",
"5"
] | a(n) is the least prime factor of A360519(n) with a(1) = 1. |
A361120 | [
"1",
"3",
"5",
"7",
"7",
"3",
"5",
"11",
"11",
"3",
"7",
"11",
"11",
"5",
"5",
"11",
"13",
"13",
"3",
"7",
"13",
"13",
"5",
"17",
"17",
"7",
"3",
"13",
"17",
"17",
"7",
"19",
"19",
"5",
"3",
"11",
"17",
"17",
"5",
"23",
"23",
"19",
"19",
"13",
"13",
"5",
"7",
"29",
"29",
"31",
"31",
"7",
"7",
"37",
"37",
"17",
"17",
"41",
"41",
"5",
"23",
"23",
"7",
"5",
"29",
"29",
"7",
"3",
"43",
"43",
"5",
"11",
"47"
] | a(n) is the greatest prime factor of A360519(n) with a(1) = 1. |
A361121 | [
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0"
] | 1 if n-th composite number A002808(n) is even, otherwise 0. |
A361122 | [
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1"
] | 0 if n-th composite number A002808(n) is divisible by 3, otherwise 1. |
A361123 | [
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"0"
] | 1 if n-th composite number A002808(n) is divisible by 3, otherwise 0. |
A361124 | [
"1",
"2",
"3",
"6",
"11",
"14",
"16",
"19",
"28",
"32",
"36",
"40",
"44",
"68",
"72",
"76",
"80",
"84",
"88",
"92",
"96",
"100",
"104",
"112",
"116",
"120",
"123",
"132",
"136",
"139",
"144",
"148",
"156",
"160",
"164",
"171",
"172",
"175",
"180",
"184",
"188",
"192",
"196",
"200",
"216",
"220",
"228",
"236",
"244",
"248",
"256",
"271",
"272",
"276",
"280",
"284",
"288",
"292",
"296"
] | Records in A361103. |
A361125 | [
"0",
"1",
"2",
"3",
"4",
"5",
"9",
"10",
"11",
"18",
"22",
"24",
"28",
"29",
"38",
"42",
"47",
"52",
"54",
"57",
"59",
"66",
"68",
"72",
"75",
"77",
"80",
"83",
"86",
"92",
"94",
"98",
"104",
"107",
"114",
"115",
"118",
"119",
"121",
"124",
"127",
"131",
"133",
"135",
"138",
"143",
"149",
"163",
"165",
"175",
"181",
"188",
"197",
"199",
"202",
"204",
"206",
"211",
"213",
"216",
"218",
"222"
] | Indices of records in A361103. |
A361126 | [
"1",
"6",
"10",
"12",
"14",
"15",
"22",
"24",
"26",
"38",
"44",
"46",
"52",
"54",
"66",
"72",
"78",
"86",
"88",
"92",
"94",
"104",
"106",
"112",
"116",
"118",
"122",
"126",
"132",
"140",
"142",
"146",
"154",
"158",
"166",
"168",
"172",
"174",
"176",
"180",
"184",
"188",
"190",
"194",
"198",
"204",
"210",
"226",
"230",
"244",
"250",
"260",
"272",
"274",
"278",
"280",
"284",
"290",
"292"
] | a(n) = A361102(A361125(n)). |
A361127 | [
"2",
"3",
"11",
"16",
"28",
"24",
"32",
"40",
"48",
"51",
"55",
"59",
"84",
"96",
"104",
"120",
"123",
"127",
"144",
"148",
"160",
"164",
"176",
"200",
"203",
"207",
"208",
"211",
"236",
"252",
"260",
"276",
"280",
"304",
"308",
"312",
"332",
"336",
"344",
"368",
"376",
"388",
"392",
"400",
"404",
"428",
"452",
"468",
"472",
"480",
"496",
"500",
"508",
"520",
"532",
"556",
"560"
] | Let p = n-th odd prime; a(n) = index where 2*p appears in A360519, or -1 if 2*p never appears. |
A361128 | [
"1",
"2",
"5",
"7",
"3",
"4",
"5",
"11",
"9",
"2",
"7",
"11",
"3",
"5",
"2",
"11",
"13",
"3",
"4",
"7",
"13",
"5",
"2",
"17",
"7",
"9",
"2",
"13",
"17",
"3",
"2",
"19",
"5",
"3",
"4",
"11",
"17",
"25",
"2",
"23",
"3",
"19",
"4",
"13",
"3",
"5",
"2",
"29",
"3",
"31",
"8",
"7",
"3",
"37",
"4",
"17",
"3",
"41",
"16",
"5",
"23",
"7",
"12",
"5",
"29",
"49",
"2",
"3",
"43",
"25",
"2",
"3",
"47",
"5",
"8",
"3",
"7",
"19",
"2",
"27",
"5",
"31"
] | Let b = A360519; let Lg = gcd(b(n-1),b(n)), Rg = gcd(b(n),b(n+1)); let L(n) = prod_{primes p|Lg} p-part of b(n), R(n) = prod_{primes p|Rg} p-part of b(n), M(n) = b(n)/(L(n)*R(n)); sequence gives L(n). |
A361129 | [
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"7",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"7",
"1",
"1",
"1",
"1",
"1",
"5",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"11",
"1",
"1",
"11",
"1",
"1",
"1",
"1",
"13",
"1",
"1",
"1",
"1",
"1",
"1",
"9",
"1",
"1",
"1",
"1",
"1",
"1",
"5",
"17",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"1"
] | Let b = A360519; let Lg = gcd(b(n-1),b(n)), Rg = gcd(b(n),b(n+1)); let L(n) = prod_{primes p|Lg} p-part of b(n), R(n) = prod_{primes p|Rg} p-part of b(n), M(n) = b(n)/(L(n)*R(n)); sequence gives M(n). |
A361130 | [
"2",
"5",
"7",
"3",
"4",
"5",
"11",
"3",
"2",
"7",
"11",
"9",
"5",
"8",
"11",
"13",
"3",
"8",
"7",
"13",
"5",
"2",
"17",
"7",
"9",
"4",
"13",
"17",
"3",
"2",
"19",
"5",
"9",
"16",
"11",
"17",
"5",
"2",
"23",
"3",
"19",
"4",
"13",
"9",
"25",
"2",
"29",
"3",
"31",
"2",
"7",
"3",
"37",
"2",
"17",
"9",
"41",
"2",
"5",
"23",
"7",
"12",
"5",
"29",
"7",
"2",
"27",
"43",
"5",
"4",
"3",
"47",
"5",
"2",
"9",
"49",
"19",
"8",
"3",
"5",
"31",
"4",
"43",
"7"
] | Let b = A360519; let Lg = gcd(b(n-1),b(n)), Rg = gcd(b(n),b(n+1)); let L(n) = prod_{primes p|Lg} p-part of b(n), R(n) = prod_{primes p|Rg} p-part of b(n), M(n) = b(n)/(L(n)*R(n)); sequence gives R(n). |
A361131 | [
"1",
"4",
"11",
"18",
"25",
"26",
"28",
"44",
"47",
"59",
"63",
"80",
"81",
"101",
"108",
"114",
"125",
"135",
"148",
"151",
"153",
"162",
"172",
"187",
"198",
"205",
"206",
"223",
"229",
"234",
"237",
"256",
"268",
"274",
"279",
"294",
"297",
"304",
"322",
"335",
"338",
"355",
"374",
"381",
"387",
"393",
"401",
"433",
"438",
"439",
"443",
"446",
"447",
"472",
"484",
"491",
"495"
] | Let d = A096567(n) be the first digit to appear n times in the decimal expansion of Pi; if d is the m-th digit of Pi, a(n) = m. |
A361132 | [
"1",
"1",
"1",
"16",
"1",
"1",
"1",
"81",
"16",
"1",
"1",
"16",
"1",
"1",
"1",
"256",
"1",
"16",
"1",
"16",
"1",
"1",
"1",
"81",
"16",
"1",
"81",
"16",
"1",
"1",
"1",
"625",
"1",
"1",
"1",
"256",
"1",
"1",
"1",
"81",
"1",
"1",
"1",
"16",
"16",
"1",
"1",
"256",
"16",
"16",
"1",
"16",
"1",
"81",
"1",
"81",
"1",
"1",
"1",
"16",
"1",
"1",
"16",
"1296",
"1",
"1",
"1",
"16",
"1",
"1",
"1",
"1296",
"1",
"1",
"16",
"16"
] | Multiplicative with a(p^e) = e^4, p prime and e > 0. |
A361133 | [
"1",
"2",
"3",
"6",
"9",
"4",
"12",
"8",
"10",
"5",
"15",
"18",
"20",
"21",
"7",
"14",
"24",
"28",
"16",
"27",
"35",
"42",
"49",
"25",
"56",
"22",
"11",
"33",
"30",
"44",
"36",
"40",
"55"
] | a(n) = n for n <= 3. Let h, i, j represent a(n-3), a(n-2), a(n-1) respectively. For n > 3, if there is a symmetric difference in the sets of distinct primes dividing h and j, with greatest member p then a(n) is the least novel multiple of p. Otherwise, a(n) is the least novel k such that (k,i) > 1. |
A361134 | [
"1",
"2",
"5",
"20",
"39",
"66",
"111",
"166",
"235",
"328",
"437",
"566",
"725",
"906",
"1113",
"1356",
"1627",
"1930",
"2275",
"2654",
"3071",
"3536",
"4041",
"4590",
"5193",
"5842",
"6541",
"7300",
"8111",
"8978",
"9911",
"10902",
"11955",
"13080",
"14269",
"15526",
"16861",
"18266",
"19745",
"21308",
"22947",
"24666",
"26475",
"28366",
"30343"
] | a(1) = 1, a(2) = 2; for n >= 3, a(n) = (n-1)^3 - a(n-1) - a(n-2). |
A361135 | [
"1",
"3",
"8",
"30",
"118",
"548",
"2790",
"16029",
"101353",
"706572",
"5375249",
"44402094",
"395734706",
"3786401086",
"38711834576",
"421217184135",
"4860174299186",
"59278045511959",
"762055884150141",
"10299293881159294",
"145994591873294780",
"2165938721141964179",
"33564939201581495090",
"542344644703485899950",
"9122110321170144880053"
] | The number of unlabeled connected fairly 4-regular multigraphs of order n, loops allowed. |
A361136 | [
"1",
"2",
"3",
"1",
"4",
"2",
"3",
"1",
"4",
"6",
"2",
"1",
"5",
"4",
"2",
"3",
"5",
"1",
"2",
"6",
"5",
"3",
"2",
"4",
"5",
"3",
"6",
"4",
"1",
"3",
"6",
"5",
"1",
"2",
"6",
"5",
"1",
"3",
"6",
"4",
"1",
"3",
"6",
"5",
"1",
"2",
"6",
"5",
"1",
"2",
"3",
"5",
"4",
"2",
"3",
"5",
"4",
"1",
"3",
"6",
"4",
"1",
"3",
"6",
"4",
"5",
"3",
"2",
"4",
"5",
"3",
"2",
"4",
"6",
"3",
"1",
"4",
"6",
"3",
"1",
"4",
"6",
"2",
"1",
"5",
"6",
"2",
"1",
"5",
"6",
"2",
"4",
"5",
"3",
"2",
"4"
] | Numbers appearing on the upper face of a die as a result of its turning over the edge while it rolls along the square spiral of natural numbers. |
A361137 | [
"1",
"10",
"98",
"983",
"10062",
"105024",
"1112757",
"11934910",
"129307100",
"1412855500",
"15548498902",
"172168201088",
"1916619748084",
"21436209373224",
"240741065193282",
"2713584138389838"
] | Number of rooted maps of genus 1/2 with n edges. |
A361138 | [
"0",
"5",
"104",
"1647",
"23560",
"320198",
"4222792",
"54617267",
"696972524",
"8807574390",
"110483092984",
"1377998069826",
"17108920039328",
"211636362018548",
"2609949110616064",
"32104324480419131"
] | Number of rooted maps of genus 1 with n edges. |
A361139 | [
"0",
"1",
"9",
"69",
"510",
"3738",
"27405",
"201569",
"1488762",
"11043318",
"82257890",
"615092178",
"4615882908",
"34752865332",
"262437282621",
"1987229885913"
] | Number of rooted bipartite maps of genus 1/2 with n edges. |
A361140 | [
"0",
"0",
"4",
"63",
"720",
"7254",
"68460",
"621315",
"5496208",
"47759130",
"409620156",
"3478672642",
"29315742924",
"245539064736",
"2046309441924",
"16983591315267"
] | Number of rooted bipartite maps of genus 1 with n edges. |
A361141 | [
"7",
"202",
"4900",
"112046",
"2490132",
"54442636",
"1177912344",
"25302706734",
"540709469284",
"11509659737732",
"244254583041960",
"5170993925895980",
"109258058984867592",
"2304778527410416728",
"48552885599587471920"
] | Number of rooted triangulations of genus 1 with 2n edges. |
A361142 | [
"1",
"1",
"7",
"91",
"1773",
"46401",
"1529593",
"60911103",
"2845757449",
"152663425633",
"9250206248781",
"624880915165959",
"46569571425664477",
"3795729136868379777",
"335902071304953561073",
"32074779600414913885231",
"3287242849289861637185937",
"359917016243351870997841473"
] | E.g.f. satisfies A(x) = exp( x*A(x)^2/(1 - x*A(x)) ). |
A361143 | [
"1",
"1",
"11",
"241",
"8105",
"370061",
"21403675",
"1500521485",
"123685912817",
"11724012791929",
"1256517775425131",
"150254377493878505",
"19833528195709809817",
"2864566162751107839493",
"449364739762263286489403",
"76084967168410028438252101",
"13829896583435315152843525985"
] | E.g.f. satisfies A(x) = exp( x*A(x)^4/(1 - x*A(x)^2) ). |
A361144 | [
"1",
"2",
"4",
"5",
"6",
"7",
"8",
"10",
"11",
"14",
"15",
"17",
"16",
"19",
"20",
"21",
"22",
"23",
"24",
"26",
"27",
"28",
"29",
"30",
"33",
"34",
"36",
"37",
"38",
"39",
"40",
"42",
"44",
"46",
"47",
"49",
"48",
"51",
"52",
"53",
"54",
"56",
"58",
"60",
"61",
"62",
"63",
"64",
"65",
"66",
"68",
"69",
"70",
"71",
"72",
"74",
"75",
"78",
"79",
"81",
"80",
"83",
"84",
"85",
"86",
"87",
"88"
] | Lexicographically earliest sequence of positive integers such that the sums Sum_{i = 1+k*2^e..(k+1)*2^e} a(i) with k, e >= 0 are all distinct. |
A361146 | [
"2",
"1",
"9",
"5",
"4",
"7",
"6",
"10",
"3",
"8",
"14",
"31",
"18",
"11",
"17",
"19",
"15",
"13",
"16",
"21",
"20",
"23",
"22",
"26",
"32",
"24",
"28",
"27",
"30",
"29",
"12",
"25",
"34",
"33",
"41",
"37",
"36",
"39",
"38",
"42",
"35",
"40",
"133",
"46",
"50",
"44",
"49",
"51",
"47",
"45",
"48",
"53",
"52",
"56",
"59",
"54",
"76",
"60",
"55",
"58",
"62",
"61",
"64",
"63",
"66",
"65",
"73"
] | a(n) is the sibling of n in the infinite binary tree underlying A361144. |
A361147 | [
"1",
"27",
"64",
"343",
"216",
"1728",
"512",
"3375",
"2197",
"5832",
"1728",
"21952",
"2744",
"13824",
"13824",
"29791",
"5832",
"59319",
"8000",
"74088",
"32768",
"46656",
"13824",
"216000",
"29791",
"74088",
"64000",
"175616",
"27000",
"373248",
"32768",
"250047",
"110592",
"157464",
"110592",
"753571",
"54872",
"216000",
"175616"
] | a(n) = sigma(n)^3. |
A361148 | [
"1",
"1",
"16",
"16",
"256",
"16",
"1296",
"256",
"1296",
"256",
"10000",
"256",
"20736",
"1296",
"4096",
"4096",
"65536",
"1296",
"104976",
"4096",
"20736",
"10000",
"234256",
"4096",
"160000",
"20736",
"104976",
"20736",
"614656",
"4096",
"810000",
"65536",
"160000",
"65536",
"331776",
"20736",
"1679616",
"104976",
"331776",
"65536",
"2560000"
] | a(n) = phi(n)^4. |
A361149 | [
"0",
"0",
"1",
"10",
"224",
"22176"
] | Number of chordless cycles in the n-hypercube graph Q_n. |
A361150 | [
"1",
"17",
"137",
"611",
"1839",
"4405",
"9101",
"16859",
"28987",
"46663",
"71797",
"105863",
"151259",
"209895",
"284777",
"378661",
"493863",
"634985",
"804801",
"1007439",
"1245345",
"1526369",
"1851971",
"2227153",
"2658287",
"3151447",
"3711837",
"4343483",
"5053859",
"5849959",
"6739255",
"7727399",
"8825137",
"10034745"
] | a(n) = A014284(n^2) + A014284(n^2-1). |
A361151 | [
"2",
"7",
"11",
"29",
"43",
"97",
"137",
"283",
"389",
"749",
"1003",
"1839",
"2421",
"4259",
"5515",
"9391",
"12011",
"19887",
"25143",
"40665",
"50931",
"80679",
"100161",
"155847",
"192051",
"294047",
"359839",
"543127",
"660623",
"984239",
"1190359",
"1752799",
"2109119",
"3072351",
"3679263",
"5307023",
"6327871",
"9044395"
] | a(n) = K(n-1) + K(n) + K(n+1), where K(n) = A341711(floor(n/2)). |
A361152 | [
"0",
"1",
"4",
"9",
"21",
"40",
"79",
"138",
"250",
"415",
"707",
"1126",
"1836",
"2837",
"4466",
"6723",
"10290",
"15167",
"22672",
"32805",
"48071",
"68470",
"98610",
"138491",
"196474",
"272559",
"381540",
"523417",
"724042",
"983415",
"1345848",
"1811341",
"2454994",
"3276807",
"4402076",
"5830801",
"7769950",
"10219523",
"13516934"
] | a(n) = (A051894(n) - 1)/2. |
A361153 | [
"0",
"1",
"1",
"3",
"20",
"9731608032706560018"
] | a(0)=0, a(1)=1; thereafter a(n) = (n-1)*a(n-1)! + (n-2)*a(n-2)!. |
A361154 | [
"0",
"0",
"0",
"1",
"0",
"1",
"1",
"2",
"2",
"1",
"0",
"1",
"2",
"1",
"0",
"0",
"0",
"2",
"2",
"0",
"0",
"1",
"0",
"3",
"1",
"3",
"0",
"1",
"1",
"1",
"2",
"4",
"4",
"2",
"1",
"1",
"0",
"1",
"2",
"3",
"0",
"3",
"2",
"1",
"0",
"0",
"0",
"2",
"2",
"0",
"0",
"2",
"2",
"0",
"0",
"1",
"0",
"3",
"3",
"1",
"0",
"1",
"3",
"3",
"0",
"1",
"1",
"1",
"2",
"3",
"1",
"2",
"2",
"1",
"3",
"2",
"1",
"1",
"0",
"1",
"2",
"3",
"0",
"1",
"2",
"1",
"0",
"3",
"2",
"1",
"0"
] | Consider the square grid with cells {(x,y), x, y >= 0}; label the cells by downwards antidiagonals with nonnegative integers so that cells which are a knight's move apart have different labels; always choose smallest possible label. |
A361155 | [
"12",
"24",
"28",
"33",
"40",
"48",
"52",
"57",
"60",
"72",
"73",
"76",
"84",
"88",
"96",
"97"
] | Discriminants of gothic Teichmuller curves. |
A361156 | [
"1",
"1",
"2",
"2",
"2",
"1",
"2",
"2",
"1",
"1",
"4",
"2",
"1",
"2",
"1",
"4"
] | Number of ideals of norm 6 in the order O_D associated with the Teichmuller curve of discriminant D = A361155(n). |
A361157 | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"2",
"3",
"1",
"3"
] | Genus of Weierstrass curve with discriminant A079898(n) in moduli space M_2 of compact Riemann surfaces of genus 2. |
A361158 | [
"1",
"0",
"1",
"1",
"1",
"0",
"2",
"1",
"2",
"3",
"2",
"1",
"1",
"1",
"2",
"3",
"2",
"2",
"0",
"3",
"2",
"1",
"4"
] | Number of elliptic points of order 2 in Weierstrass curve with discriminant A079896(n) in moduli space M_2 of compact Riemann surfaces of genus 2. |
A361159 | [
"1",
"2",
"3",
"3",
"3",
"5",
"4",
"6",
"7",
"5",
"7",
"6",
"9",
"12",
"7",
"9",
"8",
"11",
"15",
"7",
"10",
"10",
"12"
] | Number of cusps in Weierstrass curve with discriminant A079896(n) in moduli space M_2 of compact Riemann surfaces of genus 2. |
A361160 | [
"8",
"12",
"17",
"20",
"24",
"28",
"32",
"33",
"40",
"41",
"44",
"48",
"52",
"56",
"57",
"60"
] | Discriminants of Weierstrass curves in moduli space M_3 of compact Riemann surfaces of genus 3. |
A361161 | [
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"2"
] | Genus of Weierstrass curve with discriminant A360160(n) in moduli space M_3 of compact Riemann surfaces of genus 3. |
A361162 | [
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"2",
"0",
"0"
] | Number of elliptic points of order 2 in Weierstrass curve with discriminant A360160(n) in moduli space M_3 of compact Riemann surfaces of genus 3. |
A361163 | [
"1",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"2",
"1",
"2",
"0",
"0",
"2",
"1",
"0"
] | Number of elliptic points of order 3 in Weierstrass curve with discriminant A360160(n) in moduli space M_3 of compact Riemann surfaces of genus 3. |
A361164 | [
"1",
"2",
"3",
"4",
"4",
"4",
"7",
"7",
"6",
"8",
"6",
"10",
"12",
"6",
"11",
"8"
] | Number of cusps in Weierstrass curve with discriminant A360160(n) in moduli space M_3 of compact Riemann surfaces of genus 3. |
A361165 | [
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"3",
"3",
"4",
"4",
"4",
"4",
"6",
"7",
"8"
] | Genus of Weierstrass curve with discriminant A079896(n) in moduli space M_4 of compact Riemann surfaces of genus 4. |
A361166 | [
"0",
"1",
"1",
"0",
"0",
"2",
"0",
"2",
"2",
"0",
"2",
"0",
"0",
"2",
"0",
"4",
"0",
"2",
"2",
"0",
"4",
"0",
"4"
] | Number of elliptic points of order 2 in Weierstrass curve with discriminant A079896(n) in moduli space M_4 of compact Riemann surfaces of genus 4. |
A361167 | [
"1",
"1",
"0",
"2",
"1",
"1",
"1",
"0",
"2",
"3",
"2",
"0",
"4",
"2",
"1",
"2",
"0",
"1",
"2",
"5",
"2",
"1",
"0"
] | Number of elliptic points of order 3 in Weierstrass curve with discriminant A079896(n) in moduli space M_4 of compact Riemann surfaces of genus 4. |
A361168 | [
"1",
"2",
"3",
"3",
"6",
"5",
"4",
"6",
"7",
"5",
"7",
"12",
"9",
"12",
"14",
"9",
"8",
"11",
"15",
"7",
"10",
"20",
"12"
] | Number of cusps in Weierstrass curve with discriminant A079896(n) in moduli space M_4 of compact Riemann surfaces of genus 4. |
A361169 | [
"17",
"20",
"24",
"28",
"32",
"33",
"40",
"41",
"44",
"48",
"52",
"56",
"57",
"60",
"65",
"68",
"72",
"73",
"76",
"80",
"84",
"88",
"89",
"92",
"96",
"97",
"104",
"105",
"108",
"112",
"113",
"116",
"120",
"124",
"128",
"129",
"132",
"136",
"137",
"140",
"145",
"148",
"152",
"153",
"156",
"160",
"161",
"164",
"168",
"172",
"176",
"177",
"180",
"184",
"185",
"188",
"192",
"193",
"200",
"201",
"204",
"208",
"209",
"212",
"216",
"217",
"220",
"224",
"228",
"232",
"233"
] | Discriminants D of Prym-Teichmuller curves W_D(4) in genus 3. |
A361171 | [
"0",
"0",
"1",
"13",
"197",
"4729",
"156806",
"7035482",
"505265569",
"82612843683",
"33651820752580",
"23922790371389972",
"25614853328191562332",
"43322613720440154974138",
"128405885225433787867253690",
"738840753928503040569961869076",
"8481241718402438554921627740308746",
"179685856472407342498054958799766397100"
] | Number of chordless cycles in the n X n king graph. |
A361172 | [
"1",
"1",
"2",
"1",
"3",
"1",
"2",
"4",
"1",
"3",
"5",
"1",
"2",
"6",
"1",
"3",
"4",
"7",
"1",
"2",
"5",
"8",
"1",
"3",
"6",
"9",
"1",
"2",
"4",
"10",
"1",
"3",
"5",
"7",
"11",
"1",
"2",
"6",
"8",
"12",
"1",
"3",
"4",
"9",
"13",
"1",
"2",
"5",
"10",
"14",
"1",
"3",
"6",
"7",
"15",
"1",
"2",
"4",
"8",
"11",
"16",
"1",
"3",
"5",
"9",
"12",
"17",
"1",
"2",
"6",
"10",
"13",
"18",
"1",
"3",
"4",
"7",
"14",
"19",
"1",
"2",
"5",
"8",
"15",
"20",
"1"
] | a(n) is the smallest positive number not among the terms between a(n-1) and the previous most recent occurrence of a(n-1) inclusive; if a(n-1) is a first occurrence, set a(n)=1; a(1)=1. |
A361174 | [
"1",
"2",
"3",
"6",
"5",
"6",
"7",
"10",
"12",
"10",
"11",
"18",
"13",
"14",
"15",
"6",
"17",
"24",
"19",
"30",
"21",
"22",
"23",
"30",
"30",
"26",
"30",
"42",
"29",
"30",
"31",
"34",
"33",
"34",
"35",
"72",
"37",
"38",
"39",
"50",
"41",
"42",
"43",
"66",
"60",
"46",
"47",
"18",
"56",
"60",
"51",
"78",
"53",
"60",
"55",
"70",
"57",
"58",
"59",
"90",
"61",
"62",
"84",
"78",
"65",
"66",
"67",
"102"
] | The sum of the exponential squarefree exponential divisors (or e-squarefree e-divisors) of n. |
A361175 | [
"1",
"2",
"3",
"6",
"5",
"6",
"7",
"10",
"12",
"10",
"11",
"18",
"13",
"14",
"15",
"18",
"17",
"24",
"19",
"30",
"21",
"22",
"23",
"30",
"30",
"26",
"30",
"42",
"29",
"30",
"31",
"34",
"33",
"34",
"35",
"72",
"37",
"38",
"39",
"50",
"41",
"42",
"43",
"66",
"60",
"46",
"47",
"54",
"56",
"60",
"51",
"78",
"53",
"60",
"55",
"70",
"57",
"58",
"59",
"90",
"61",
"62",
"84",
"78",
"65",
"66",
"67"
] | The sum of the exponential infinitary divisors of n. |
A361176 | [
"256",
"768",
"1280",
"1792",
"2304",
"2816",
"3328",
"3840",
"4352",
"4864",
"5376",
"5888",
"6400",
"6561",
"6912",
"7424",
"7936",
"8448",
"8960",
"9472",
"9984",
"10496",
"11008",
"11520",
"12032",
"12544",
"13056",
"13122",
"13568",
"14080",
"14592",
"15104",
"15616",
"16128",
"16640",
"17152",
"17664",
"18176",
"18688",
"19200",
"19712"
] | Numbers that are not exponentially cubefree: numbers with at least one noncubefree exponent in their canonical prime factorization. |
A361177 | [
"1",
"2",
"3",
"5",
"6",
"7",
"10",
"11",
"13",
"14",
"15",
"16",
"17",
"19",
"21",
"22",
"23",
"26",
"29",
"30",
"31",
"33",
"34",
"35",
"37",
"38",
"39",
"41",
"42",
"43",
"46",
"47",
"48",
"51",
"53",
"55",
"57",
"58",
"59",
"61",
"62",
"65",
"66",
"67",
"69",
"70",
"71",
"73",
"74",
"77",
"78",
"79",
"80",
"81",
"82",
"83",
"85",
"86",
"87",
"89",
"91",
"93",
"94",
"95",
"97",
"101",
"102"
] | Exponentially powerful numbers: numbers whose exponents in their canonical prime factorization are all powerful numbers (A001694). |
A361178 | [
"1",
"2",
"2",
"3",
"3",
"5",
"4",
"6",
"6",
"8",
"8",
"10",
"9",
"13",
"13",
"8",
"16",
"13",
"16",
"6",
"19",
"17",
"5",
"23",
"21",
"21",
"25",
"27",
"26",
"26",
"28",
"30",
"31",
"29",
"33",
"27",
"20",
"35",
"34",
"33",
"39",
"41",
"40",
"16",
"43",
"38",
"40",
"47",
"25",
"49",
"49",
"44",
"46",
"49",
"51",
"55",
"39",
"57",
"57",
"59",
"58",
"59",
"62",
"57",
"61",
"58",
"66",
"61",
"67"
] | a(1) = 1, a(2) = 2; for n >= 3, a(n) is the greatest k where a(n-1) + a(n-2) + ... + a(n-k) is prime, or a(n) = -1 if no such k exists. |
A361179 | [
"1",
"81",
"256",
"2401",
"1296",
"20736",
"4096",
"50625",
"28561",
"104976",
"20736",
"614656",
"38416",
"331776",
"331776",
"923521",
"104976",
"2313441",
"160000",
"3111696",
"1048576",
"1679616",
"331776",
"12960000",
"923521",
"3111696",
"2560000",
"9834496",
"810000",
"26873856",
"1048576",
"15752961",
"5308416"
] | a(n) = sigma(n)^4. |
A361180 | [
"3",
"5",
"17",
"97",
"193",
"257",
"641",
"769",
"12289",
"18433",
"40961",
"65537",
"114689",
"147457",
"163841",
"786433",
"1179649",
"5767169",
"7340033",
"13631489",
"23068673",
"167772161",
"469762049",
"2013265921",
"2281701377",
"3221225473",
"3489660929",
"12348030977",
"77309411329",
"206158430209",
"2061584302081",
"2748779069441"
] | Primes p such that the odd part of p - 1 is upper-bounded by the dyadic valuation of p - 1. |
A361181 | [
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"11",
"12",
"16",
"18",
"24",
"25",
"27",
"32",
"36",
"48",
"49",
"54",
"64",
"72",
"81",
"96",
"101",
"108",
"121",
"125",
"128",
"131",
"144",
"151",
"162",
"181",
"191",
"192",
"216",
"243",
"256",
"288",
"313",
"324",
"343",
"353",
"373",
"383",
"384",
"432",
"486",
"512",
"576",
"625",
"648",
"717",
"727",
"729",
"757",
"768",
"787",
"797",
"864",
"919",
"929",
"972",
"989"
] | Numbers such that both sum and product of the prime factors (without multiplicity) are palindromic. |
A361182 | [
"1",
"4",
"41",
"735",
"19293",
"672573",
"29342241",
"1540097541",
"94579646553",
"6656561754345",
"528414534842949",
"46716837535074897",
"4552821617337191637",
"484953672676323320109",
"56056228305888242732841",
"6988787950179969557086797",
"934866118278080385555647025"
] | E.g.f. satisfies A(x) = exp( 3*x*A(x) ) / (1-x). |
A361183 | [
"0",
"0",
"1",
"46",
"1152",
"35698",
"5567415"
] | Number of chordless cycles in the n-Mycielski graph. |
A361184 | [
"0",
"0",
"12",
"228",
"2120",
"21004",
"241186",
"3375074",
"56315906"
] | Number of chordless cycles in the n X n queen graph. |
A361185 | [
"0",
"0",
"15",
"264",
"1700",
"6900",
"21315",
"54880",
"123984",
"253800",
"480975",
"856680",
"1450020",
"2351804",
"3678675",
"5577600",
"8230720",
"11860560",
"16735599",
"23176200",
"31560900",
"42333060",
"56007875",
"73179744",
"94530000",
"120835000",
"152974575",
"191940840",
"238847364",
"294938700"
] | Number of chordless cycles in the n X n rook complement graph. |
A361186 | [
"0",
"0",
"0",
"6",
"252",
"14904"
] | Number of chordless cycles in the halved cube graph Q_n/2. |
A361187 | [
"0",
"0",
"36",
"312",
"20264"
] | Number of chordless cycles in the n-folded cube graph. |
A361188 | [
"0",
"0",
"0",
"48",
"696",
"4424",
"16296",
"46096",
"106072",
"219840",
"410384",
"717048",
"1180992",
"1862352",
"2818944",
"4141160",
"5909616",
"8242416",
"11250560",
"15086744",
"19892296",
"25863248",
"33172832",
"42059520",
"52742984",
"65508072",
"80612544",
"98400416"
] | Number of odd chordless cycles in the complement of the n X n queen graph. |
A361189 | [
"1",
"2",
"-1",
"-4",
"-3",
"-6",
"4",
"-11",
"5",
"6",
"7",
"8",
"-8",
"-12",
"9",
"21",
"-10",
"-13",
"12",
"25",
"13",
"16",
"-14",
"31",
"-15",
"-17",
"19",
"33",
"-19",
"-21",
"22",
"41",
"-22",
"-24",
"24",
"49",
"-25",
"-26",
"-27",
"-28",
"28",
"34",
"-29",
"61",
"-30",
"-31",
"-33",
"-34",
"35",
"39",
"-35",
"75",
"-36",
"-37",
"38",
"77",
"-38",
"-39",
"-41",
"-42"
] | Infinite sequence of nonzero integers build the greedy way such that the sums Sum_{i = k*2^e..(k+1)*2^e} a(i) with k, e >= 0 are all distinct; each term is minimal in absolute value and in case of a tie, preference is given to the positive value. |
A361191 | [
"1",
"2",
"4",
"8",
"5",
"11",
"6",
"16",
"7",
"10",
"9",
"21",
"18",
"32",
"19",
"64",
"20",
"33",
"25",
"49",
"26",
"34",
"27",
"65",
"30",
"35",
"31",
"66",
"36",
"71",
"37",
"105",
"38",
"67",
"39",
"108",
"41",
"68",
"42",
"128",
"43",
"69",
"44",
"116",
"45",
"70",
"51",
"176",
"52",
"72",
"57",
"129",
"58",
"73",
"59",
"118",
"60",
"78",
"63",
"130",
"74",
"132",
"80",
"256",
"81"
] | Lexicographically earliest sequence of positive integers such that the sums SumXOR_{i = 1+k*2^e..(k+1)*2^e} a(i) with k, e >= 0 are all distinct (where SumXOR is the analog of summation under the binary XOR operation). |
A361193 | [
"1",
"-1",
"6",
"-50",
"648",
"-10952",
"232336",
"-5919664",
"176435328",
"-6024464000",
"231972167424",
"-9946181374208",
"470038191434752",
"-24276240445152256",
"1360508977539004416",
"-82233680186863536128",
"5332689963474238341120",
"-369321737420738845638656"
] | E.g.f. satisfies A(x) = exp( -2*x*A(x) ) / (1-x). |
A361194 | [
"1",
"-2",
"17",
"-237",
"4893",
"-133683",
"4567905",
"-187666587",
"9017657433",
"-496470972951",
"30824023641669",
"-2131090659947439",
"162397790115179733",
"-13525005928296072915",
"1222285110682680848169",
"-119135392516302191619507",
"12458374493322416970025521"
] | E.g.f. satisfies A(x) = exp( -3*x*A(x) ) / (1-x). |
A361195 | [
"1",
"3",
"135",
"23625",
"260465625",
"11371668721875",
"7888446990683634375",
"21776965089186101310140625",
"15330043202319289712414934678515625",
"43033523436556282747812223470803609794921875",
"1927983533652930855481078826533672813447199742802734375"
] | Numerator of the discriminant of the n-th Legendre polynomial. |
A361196 | [
"1",
"1",
"4",
"16",
"1024",
"65536",
"16777216",
"4294967296",
"70368744177664",
"1152921504606846976",
"75557863725914323419136",
"4951760157141521099596496896",
"5192296858534827628530496329220096",
"5444517870735015415413993718908291383296",
"22835963083295358096932575511191922182123945984"
] | Denominator of the discriminant of the n-th Legendre polynomial. |
A361197 | [
"1",
"2",
"3",
"3",
"3",
"3",
"3",
"4",
"4",
"2",
"5",
"5",
"3",
"3",
"3",
"5",
"4",
"4",
"5",
"5",
"5",
"3",
"3",
"6",
"4",
"3",
"6",
"5",
"5",
"3",
"5",
"6",
"4",
"4",
"4",
"8",
"3",
"3",
"5",
"4",
"6",
"2",
"5",
"8",
"6",
"3",
"3",
"7",
"6",
"4",
"6",
"6",
"4",
"6",
"3",
"7",
"4",
"2",
"7",
"5",
"6",
"3",
"6",
"8",
"3",
"5",
"5",
"6",
"7",
"2",
"5",
"8",
"4",
"4",
"6",
"8",
"4",
"2",
"6",
"7",
"8",
"4",
"5",
"9",
"3",
"5",
"4",
"5",
"6",
"4",
"6",
"5",
"4",
"3",
"4",
"9"
] | a(n) is the number of equations in the set {x^2 + 2y^2 = n, 2x^2 + 3y^2 = n, ..., k*x^2 + (k+1)*y^2 = n, ..., n*x^2 + (n+1)*y^2 = n} which admit at least one nonnegative integer solution. |
A361198 | [
"2",
"1",
"6",
"5",
"4",
"3",
"14",
"9",
"8",
"13",
"12",
"11",
"10",
"7",
"30",
"17",
"16",
"21",
"20",
"19",
"18",
"29",
"24",
"23",
"28",
"27",
"26",
"25",
"22",
"15",
"62",
"33",
"32",
"37",
"36",
"35",
"34",
"45",
"40",
"39",
"44",
"43",
"42",
"41",
"38",
"61",
"48",
"47",
"52",
"51",
"50",
"49",
"60",
"55",
"54",
"59",
"58",
"57",
"56",
"53",
"46",
"31",
"126",
"65",
"64",
"69",
"68"
] | Consider a perfect infinite binary tree with nodes labeled with distinct positive integers where n appears at level A082850(n) and each level is filled from left to right; a(n) is the sibling of n in this tree. |
A361199 | [
"1",
"2",
"2",
"2",
"2",
"1",
"3",
"2",
"2",
"3",
"7",
"2",
"3",
"7",
"3",
"5",
"3",
"7",
"3",
"7",
"4",
"4",
"1",
"10",
"9",
"2",
"5",
"7",
"6",
"4",
"4",
"5",
"11",
"8",
"6",
"2",
"4",
"7",
"15",
"6",
"5",
"10",
"12",
"9",
"7",
"11",
"7",
"14",
"9",
"8",
"7",
"16",
"11",
"9",
"11",
"10",
"8",
"7",
"11",
"13",
"13",
"9",
"15",
"9",
"13",
"14",
"7",
"15",
"9",
"12",
"14",
"15",
"5",
"13",
"12",
"6",
"12",
"9",
"15"
] | a(1) = 1, a(2) = 2; for n >=3, a(n) is the number of primes in a(n-1), a(n-1) + a(n-2), ..., a(n-1) + a(n-2) + ... + a(1). |
A361200 | [
"0",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"3",
"2",
"1",
"2",
"1",
"2",
"3",
"4",
"1",
"2",
"1",
"2",
"3",
"2",
"1",
"4",
"5",
"2",
"3",
"2",
"1",
"2",
"1",
"4",
"3",
"2",
"5",
"4",
"1",
"2",
"3",
"4",
"1",
"2",
"1",
"2",
"3",
"2",
"1",
"4",
"7",
"2",
"3",
"2",
"1",
"6",
"5",
"4",
"3",
"2",
"1",
"4",
"1",
"2",
"3",
"8",
"5",
"2",
"1",
"2",
"3",
"2",
"1",
"4",
"1",
"2",
"3",
"2",
"7",
"2",
"1",
"4",
"9",
"2",
"1",
"4",
"5",
"2",
"3"
] | Product of the left half (exclusive) of the multiset of prime factors of n; a(1) = 0. |
A361201 | [
"0",
"1",
"1",
"2",
"1",
"3",
"1",
"2",
"3",
"5",
"1",
"3",
"1",
"7",
"5",
"4",
"1",
"3",
"1",
"5",
"7",
"11",
"1",
"6",
"5",
"13",
"3",
"7",
"1",
"5",
"1",
"4",
"11",
"17",
"7",
"9",
"1",
"19",
"13",
"10",
"1",
"7",
"1",
"11",
"5",
"23",
"1",
"6",
"7",
"5",
"17",
"13",
"1",
"9",
"11",
"14",
"19",
"29",
"1",
"15",
"1",
"31",
"7",
"8",
"13",
"11",
"1",
"17",
"23",
"7",
"1",
"9",
"1",
"37",
"5",
"19",
"11",
"13",
"1"
] | Product of the right half (exclusive) of the multiset of prime factors of n; a(1) = 0. |
A361204 | [
"1",
"4",
"8",
"9",
"16",
"24",
"25",
"27",
"32",
"36",
"40",
"48",
"49",
"54",
"56",
"64",
"72",
"80",
"81",
"88",
"96",
"100",
"104",
"108",
"112",
"121",
"125",
"128",
"135",
"136",
"144",
"152",
"160",
"162",
"169",
"176",
"184",
"189",
"192",
"196",
"200",
"208",
"216",
"224",
"225",
"232",
"240",
"243",
"248",
"250",
"256",
"272",
"288",
"289",
"296",
"297",
"304"
] | Positive integers k such that 2*omega(k) <= bigomega(k). |
A361205 | [
"0",
"1",
"1",
"0",
"1",
"2",
"1",
"-1",
"0",
"2",
"1",
"1",
"1",
"2",
"2",
"-2",
"1",
"1",
"1",
"1",
"2",
"2",
"1",
"0",
"0",
"2",
"-1",
"1",
"1",
"3",
"1",
"-3",
"2",
"2",
"2",
"0",
"1",
"2",
"2",
"0",
"1",
"3",
"1",
"1",
"1",
"2",
"1",
"-1",
"0",
"1",
"2",
"1",
"1",
"0",
"2",
"0",
"2",
"2",
"1",
"2",
"1",
"2",
"1",
"-4",
"2",
"3",
"1",
"1",
"2",
"3",
"1",
"-1",
"1",
"2",
"1",
"1",
"2",
"3",
"1",
"-1",
"-2",
"2",
"1",
"2"
] | a(n) = 2*omega(n) - bigomega(n). |
A361206 | [
"12",
"1",
"2",
"4",
"18",
"3",
"8",
"20",
"10",
"24",
"5",
"7",
"16",
"30",
"9",
"14",
"32",
"36",
"11",
"13",
"40",
"15",
"42",
"17",
"48",
"19",
"21",
"54",
"22",
"44",
"56",
"50",
"60",
"23",
"25",
"52",
"64",
"66",
"26",
"70",
"72",
"27",
"29",
"34",
"78",
"45",
"80",
"33",
"68",
"84",
"31",
"35",
"88",
"90",
"37",
"38",
"96",
"39",
"41",
"100",
"46",
"102",
"76",
"104",
"108",
"43",
"58"
] | Lexicographically earliest infinite sequence of distinct imperfect numbers such that the sum of the abundance of all terms is never < 1. |
A361212 | [
"1",
"3",
"33",
"612",
"16353",
"576108",
"25306803",
"1334701854",
"82258866225",
"5805344935368",
"461848917299499",
"40904277651802458",
"3992219566916292873",
"425766991650939828828",
"49266876888419716251315",
"6147944525591645916094182",
"823045511075200872642258273"
] | E.g.f. satisfies A(x) = exp( 3*x*A(x) / (1-x) ). |