a-number
stringlengths 7
7
| sequence
sequencelengths 1
377
| description
stringlengths 3
852
|
---|---|---|
A361332 | [
"1",
"2",
"3",
"4",
"6",
"5",
"23",
"7",
"8",
"9",
"161",
"10",
"1771",
"12",
"11",
"16",
"23023",
"13",
"391391",
"14",
"15",
"19",
"7436429",
"17",
"18",
"21",
"20",
"24"
] | Where n appears in A351495, or -1 if it never occurs. |
A361333 | [
"2",
"3",
"6",
"23",
"161",
"1771",
"23023",
"391391",
"7436429",
"171037867",
"4960098143"
] | Index of prime(n) in A351495. |
A361334 | [
"1",
"2",
"4",
"7",
"16",
"26",
"52",
"100",
"200",
"394",
"788",
"1572",
"3144",
"6282",
"12564",
"25124",
"50248",
"100490",
"200980",
"401956",
"803912",
"1607818",
"3215636",
"6431268",
"12862536",
"25725066",
"51450132",
"102900260",
"205800520",
"411601034",
"823202068",
"1646404132",
"3292808264",
"6585616522",
"13171233044"
] | Index of 2^n in A351495. |
A361350 | [
"11",
"112",
"1124",
"11248",
"1124816",
"2486",
"248620",
"4860",
"486018",
"48601827",
"4860182736",
"486018273645",
"8601827365",
"860182736546",
"86018273654656",
"8601827365465667",
"860182736546566780",
"601273654656670",
"60127365465667064",
"-1273545704",
"-127354570438",
"-12735457043849",
"-1273545704384962",
"-127354570438496270",
"1273545743849627",
"127354574384962777",
"12735457438496277791",
"273545743849627779"
] | A variant of A359143 which includes the intermediate terms before digits are deleted (see Comments for precise definition). |
A361351 | [
"1",
"1",
"4",
"7",
"6",
"5",
"6",
"3",
"6",
"9",
"10000000000",
"115502205511",
"1440046600466",
"19225142754633",
"166668888866666",
"1555555555555555",
"16000880008800066",
"194006440028800877",
"1422046880284402844",
"11116222228888849999",
"600000000000000000000",
"2600042000840006800021"
] | Carryless n-th powers of n base 10. |
A361353 | [
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"5",
"1",
"0",
"0",
"15",
"16",
"1",
"0",
"0",
"0",
"175",
"42",
"1",
"0",
"0",
"0",
"735",
"1225",
"99",
"1",
"0",
"0",
"0",
"0",
"16065",
"6769",
"219",
"1",
"0",
"0",
"0",
"0",
"76545",
"204400",
"32830",
"466",
"1",
"0",
"0",
"0",
"0",
"0",
"2747745",
"2001230",
"147466",
"968",
"1",
"0",
"0",
"0",
"0",
"0",
"13835745",
"56143395",
"16813720",
"632434",
"1981",
"1"
] | Triangle read by rows: T(n,k) is the number of simple quasi series-parallel matroids on [n] with rank k, 1 <= k <= n. |
A361354 | [
"1",
"1",
"2",
"6",
"32",
"218",
"2060",
"23054",
"314242",
"4897410",
"87427276",
"1741312444",
"38482278928",
"931618115860",
"24554678866736",
"699328394272236",
"21410158708401980",
"701011980397033052",
"24445424273647475096",
"904440666571331841992",
"35386719095200164370912",
"1459756349974815778252152"
] | Number of simple quasi series-parallel matroids on [n]. |
A361355 | [
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"15",
"1",
"0",
"0",
"0",
"0",
"75",
"1",
"0",
"0",
"0",
"0",
"735",
"280",
"1",
"0",
"0",
"0",
"0",
"0",
"9345",
"938",
"1",
"0",
"0",
"0",
"0",
"0",
"76545",
"77805",
"2989",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1865745",
"536725",
"9285",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"13835745",
"27754650",
"3334870",
"28446",
"1",
"0"
] | Triangle read by rows: T(n,k) is the number of simple series-parallel matroids on [n] with rank k, 1 <= k <= n. |
A361356 | [
"1",
"1",
"3",
"12",
"55",
"273",
"1372",
"6824",
"33489",
"162405",
"779801",
"3713436",
"17560803",
"82553597",
"386105790",
"1797803248",
"8338313697",
"38539754649",
"177581276639",
"815982230060",
"3740047627071",
"17103604731961",
"78054858200448",
"355541644914072",
"1616688603539025"
] | Number of noncrossing caterpillars with n edges. |
A361357 | [
"1",
"0",
"1",
"0",
"0",
"3",
"0",
"0",
"4",
"8",
"0",
"0",
"5",
"30",
"20",
"0",
"0",
"6",
"75",
"144",
"48",
"0",
"0",
"7",
"154",
"595",
"504",
"112",
"0",
"0",
"8",
"280",
"1848",
"2896",
"1536",
"256",
"0",
"0",
"9",
"468",
"4788",
"12060",
"11268",
"4320",
"576",
"0",
"0",
"10",
"735",
"10920",
"40700",
"58760",
"38480",
"11520",
"1280"
] | Triangle read by rows: T(n,k) is the number of noncrossing caterpillars with n edges and diameter k, 0 <= k <= n. |
A361359 | [
"1",
"1",
"1",
"4",
"11",
"49",
"196",
"868",
"3721",
"16306",
"70891",
"309739",
"1350831",
"5897934",
"25740386",
"112368153",
"490489041",
"2141121271",
"9346382981",
"40799215354",
"178097506051",
"777437032059",
"3393689486976",
"14814237183658",
"64667544141561",
"282288713218896",
"1232255125682671"
] | Number of nonequivalent noncrossing caterpillars with n edges up to rotation. |
A361360 | [
"1",
"1",
"1",
"3",
"7",
"28",
"104",
"448",
"1886",
"8212",
"35556",
"155124",
"675897",
"2950074",
"12872294",
"56188904",
"245253691",
"1070581703",
"4673231521",
"20399699635",
"89048927767",
"388718917440",
"1696845506274",
"7407120344070",
"32333775400516",
"141144364258374",
"616127577376396"
] | Number of nonequivalent noncrossing caterpillars with n edges up to rotation and relection. |
A361361 | [
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"1",
"2",
"2",
"5",
"5",
"5",
"2",
"2",
"6",
"11",
"33",
"48",
"66",
"48",
"33",
"11",
"6",
"21",
"68",
"257",
"556",
"950",
"1071",
"950",
"556",
"257",
"68",
"21",
"94",
"510",
"2443",
"7126",
"15393",
"23644",
"27606",
"23644",
"15393",
"7126",
"2443",
"510",
"94",
"540",
"4712",
"27682",
"102122",
"270957",
"526783",
"781292",
"887305",
"781292",
"526783",
"270957",
"102122",
"27682",
"4712",
"540"
] | Triangle read by rows: T(n,k) is the number of bicolored cubic graphs on 2n unlabeled vertices with k vertices of the first color, n >= 0, 0 <= k <= 2*n. |
A361362 | [
"1",
"0",
"5",
"23",
"262",
"4775",
"126026",
"4315481",
"177939133",
"8486268015",
"457398466292",
"27442206452816",
"1812456359735759",
"130630783430897459",
"10200930403740584232",
"857888417749736680977",
"77299388952584465682198",
"7429004444540543143978901",
"758559920648248499878180973",
"82006219796827162656265186759",
"9357477001574426557631620060473"
] | Number of bicolored cubic graphs on 2n unlabeled vertices. |
A361363 | [
"1",
"3",
"8",
"14",
"15",
"21",
"26",
"40",
"130",
"144",
"182",
"255",
"310",
"372",
"465",
"468",
"680",
"980",
"1524",
"2170",
"2210",
"2418",
"2448",
"4030",
"4536",
"7008",
"7956",
"8890",
"9906",
"10220",
"10416",
"10668",
"12648",
"16335",
"16660",
"17082",
"20216",
"24624",
"30800",
"36792",
"41106",
"44055",
"48400",
"65535",
"77112",
"78320",
"85120",
"97790",
"143000",
"149688"
] | Primitive terms of A259850. |
A361364 | [
"1",
"10",
"170",
"6500",
"332050",
"19784060",
"1296395700",
"90616189800",
"6637652225250",
"503852804991500",
"39337349077483420",
"3142010167321271000",
"255747325678297576100",
"21150729618673827139000",
"1773152567858996728205000",
"150409554094012703302602000"
] | Number of 5-dimensional cubic lattice walks that start and end at origin after 2n steps, not touching origin at intermediate stages. |
A361366 | [
"1",
"3",
"16",
"218",
"9026",
"907123"
] | Number of unlabeled simple planar digraphs with n nodes. |
A361367 | [
"7",
"129",
"7447",
"1399245",
"853468061",
"1774125803324",
"12983268697759210",
"340896057593147232397",
"32512334188761655225275067",
"11365639780174824680535568799361",
"14668665138188644335253106665956458513",
"70315069858161131939222463684374769308619684"
] | Number of weakly 2-connected simple digraphs with n unlabeled nodes. |
A361368 | [
"2",
"13",
"199",
"8782",
"897604"
] | Number of weakly connected simple planar digraphs with n unlabeled nodes. |
A361369 | [
"7",
"129",
"6865",
"774052"
] | Number of weakly 2-connected simple planar digraphs with n unlabeled nodes. |
A361370 | [
"42",
"3270",
"879508"
] | Number of weakly 3-connected simple digraphs with n unlabeled nodes. |
A361371 | [
"42",
"2688",
"316208"
] | Number of weakly 3-connected simple planar digraphs with n unlabeled nodes. |
A361375 | [
"1",
"3",
"21",
"165",
"1380",
"11982",
"106626",
"965442",
"8854725",
"82022115",
"765787773",
"7195638909",
"67973370618",
"644991134880",
"6143707229880",
"58714212503784",
"562741793028282",
"5407273475087934",
"52074626299010130",
"502513862912425650",
"4857975310180620720"
] | Expansion of 1/(1 - 9*x/(1 - x))^(1/3). |
A361377 | [
"1",
"10",
"3",
"8",
"5",
"2",
"7",
"4",
"9",
"22",
"19",
"16",
"33",
"58",
"13",
"28",
"25",
"46",
"21",
"40",
"17",
"6",
"23",
"20",
"39",
"70",
"43",
"76",
"47",
"26",
"11",
"14",
"29",
"32",
"15",
"62",
"37",
"18",
"35",
"38",
"63",
"34",
"59",
"30",
"53",
"12",
"31",
"54",
"85",
"124",
"51",
"80",
"83",
"52",
"49",
"24",
"77",
"48",
"119",
"50",
"27",
"86",
"55",
"128",
"89",
"92"
] | Squares visited by a knight moving on a spirally numbered board always to the lowest unvisited coprime square. |
A361379 | [
"0",
"1",
"3",
"2",
"4",
"6",
"10",
"12",
"7",
"15",
"8",
"16",
"20",
"24",
"36",
"40",
"48",
"5",
"9",
"11",
"13",
"19",
"21",
"25",
"27",
"43",
"45",
"51",
"53",
"14",
"26",
"28",
"30",
"54",
"58",
"60",
"31",
"63",
"32",
"64",
"72",
"80",
"96",
"136",
"144",
"160",
"192",
"17",
"33",
"35",
"37",
"41",
"49",
"67",
"69",
"73",
"81",
"83",
"85",
"97",
"99",
"101",
"147",
"149",
"153"
] | Distinct values of A361401, in order of appearance. |
A361381 | [
"2",
"4",
"1",
"2",
"1",
"4",
"2",
"1",
"6",
"2",
"6",
"4",
"1",
"1",
"2",
"8",
"4",
"4",
"2",
"1",
"2",
"2",
"3",
"2",
"10",
"12",
"4",
"2",
"1",
"4",
"6",
"7",
"6",
"3",
"4",
"1",
"2",
"10",
"2",
"6",
"8",
"7",
"5",
"2",
"4",
"4",
"1",
"2",
"1",
"10",
"2",
"5",
"8",
"4",
"16",
"4",
"11",
"1",
"2",
"12",
"2",
"9",
"6",
"5",
"2",
"6",
"9",
"6",
"10",
"10",
"4",
"1",
"2",
"12",
"10",
"3",
"6",
"4",
"14",
"9",
"4",
"18",
"4",
"4",
"2",
"1",
"2",
"3",
"20",
"10",
"4",
"5",
"8",
"10",
"10",
"18",
"2",
"22"
] | In continued fraction convergents of sqrt(d), where d=A005117(n) (squarefree numbers), the position of a/b where abs(a^2 - d*b^2) = 1 or 4. |
A361382 | [
"1",
"2",
"3",
"6",
"12",
"20",
"24",
"60",
"120",
"120",
"360",
"720",
"2520",
"5040",
"20160",
"40320",
"181440",
"362880",
"1814400",
"3628800",
"19958400",
"39916800",
"239500800",
"479001600",
"3113510400",
"6227020800",
"43589145600",
"87178291200",
"653837184000",
"1307674368000",
"10461394944000",
"20922789888000"
] | The orders, with repetition, of subset-transitive permutation groups. |
A361383 | [
"1",
"1",
"2",
"3",
"3",
"4",
"5",
"4",
"7",
"7",
"7",
"7",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"15",
"16",
"15",
"16",
"15",
"18",
"17",
"18",
"19",
"19",
"19",
"19",
"19",
"19",
"19",
"19",
"19",
"19",
"19",
"19",
"22",
"24",
"22",
"24",
"23",
"24",
"26",
"26",
"26",
"26",
"26",
"26",
"26",
"26",
"26",
"29",
"32",
"33",
"35",
"32",
"35",
"32",
"35",
"32",
"35",
"32",
"35",
"32",
"36",
"35",
"37"
] | a(n) is the number of locations 1..n-1 which can be reached starting from location i=a(n-1), where jumps from location i to i +- a(i) are permitted (within 1..n-1); a(1)=1. See example. |
A361384 | [
"0",
"2",
"2",
"3",
"3",
"4",
"4",
"3",
"4",
"5",
"4",
"5",
"4",
"3",
"4",
"5",
"4",
"5",
"4",
"4",
"3",
"5",
"4",
"5",
"5",
"5",
"5",
"5",
"5",
"4",
"5",
"5",
"4",
"5",
"5",
"5",
"5",
"4",
"4",
"4",
"5",
"6",
"5",
"6",
"5",
"5",
"6",
"6",
"5",
"5",
"6",
"6",
"5",
"5",
"6",
"6",
"6",
"6",
"5",
"6",
"5",
"6",
"6",
"6",
"5",
"6",
"5",
"6",
"5",
"6",
"5",
"6",
"4",
"5",
"6",
"6",
"6",
"6",
"5",
"6",
"5",
"6",
"6",
"6",
"6",
"5",
"6"
] | a(n) is the number of distinct prime factors of the n-th unitary harmonic number. |
A361385 | [
"0",
"2",
"2",
"3",
"3",
"4",
"4",
"4",
"5",
"5",
"5",
"4",
"3",
"5",
"5",
"5",
"4",
"6",
"5",
"5",
"6",
"6",
"5",
"6",
"5",
"6",
"6",
"6",
"5",
"7",
"4",
"5",
"5",
"6",
"7",
"6",
"6",
"6",
"7",
"6",
"6",
"7",
"6",
"6",
"6",
"7",
"6",
"8",
"7",
"7",
"7",
"6",
"7",
"7",
"7",
"6",
"8",
"6",
"5",
"6",
"7",
"6",
"7",
"7",
"6",
"8",
"7",
"7",
"8",
"7",
"6",
"7",
"8",
"7",
"6",
"8",
"7",
"7",
"7",
"7",
"9",
"6",
"8",
"6",
"8",
"8",
"7"
] | a(n) is the number of "Fermi-Dirac prime" factors (or I-components) of the n-th infinitary harmonic number. |
A361386 | [
"1",
"3",
"5",
"6",
"7",
"9",
"11",
"12",
"13",
"14",
"15",
"17",
"19",
"21",
"22",
"23",
"25",
"27",
"28",
"29",
"30",
"31",
"33",
"35",
"37",
"38",
"39",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"48",
"49",
"51",
"53",
"54",
"55",
"56",
"57",
"59",
"60",
"61",
"62",
"63",
"65",
"66",
"67",
"69",
"70",
"71",
"73",
"75",
"76",
"77",
"78",
"79",
"81",
"83",
"84",
"85",
"86",
"87",
"89",
"91"
] | Infinitary arithmetic numbers: numbers for which the arithmetic mean of the infinitary divisors is an integer. |
A361387 | [
"1",
"6",
"60",
"270",
"420",
"630",
"2970",
"5460",
"8190",
"36720",
"136500",
"172900",
"204750",
"245700",
"491400",
"790398",
"791700",
"819000",
"1037400",
"1138320",
"1187550",
"1228500",
"1801800",
"2457000",
"3767400",
"4176900",
"4504500",
"5405400",
"6397300",
"6688500",
"6741630",
"7698600",
"8353800",
"10032750",
"10228680"
] | Infinitary arithmetic numbers k whose mean infinitary divisor is an infinitary divisor of k. |
A361388 | [
"1",
"2",
"8",
"96",
"5376",
"1981440",
"5722536960",
"138430238607360"
] | Number of orders of distances to vertices of n-dimensional cube. |
A361389 | [
"1",
"3",
"9",
"696",
"7656",
"11880000000000",
"16394400000000"
] | a(n) is the least positive integer that can be expressed as the sum of one or more consecutive nonzero palindromes in exactly n ways. |
A361390 | [
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"1",
"0",
"1",
"4",
"3",
"1",
"0",
"1",
"8",
"9",
"4",
"1",
"0",
"1",
"6",
"7",
"6",
"5",
"1",
"0",
"1",
"2",
"1",
"4",
"5",
"6",
"1",
"0",
"1",
"4",
"3",
"6",
"5",
"6",
"7",
"1",
"0",
"1",
"8",
"9",
"4",
"5",
"6",
"9",
"8",
"1",
"0",
"1",
"6",
"7",
"6",
"5",
"6",
"3",
"4",
"9",
"1",
"0",
"1",
"2",
"1",
"4",
"5",
"6",
"1",
"2",
"1",
"10",
"1",
"0",
"1",
"4",
"3",
"6",
"5",
"6",
"7",
"6",
"9",
"100",
"11",
"1",
"0",
"1",
"8",
"9",
"4",
"5",
"6",
"9",
"8",
"1",
"1000",
"121",
"12",
"1"
] | Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is carryless n^k base 10. |
A361391 | [
"1",
"0",
"0",
"1",
"0",
"2",
"0",
"4",
"2",
"4",
"5",
"11",
"0",
"17",
"15",
"13",
"15",
"37",
"18",
"53",
"24",
"48",
"78",
"103",
"23",
"111",
"152",
"143",
"123",
"255",
"110",
"339",
"238",
"372",
"495",
"377",
"243",
"759",
"845",
"873",
"414",
"1259",
"842",
"1609",
"1383",
"1225",
"2281",
"2589",
"1285",
"2827",
"2518",
"3904",
"3836",
"5119",
"3715",
"4630"
] | Number of strict integer partitions of n with non-integer mean. |
A361392 | [
"0",
"0",
"0",
"1",
"0",
"2",
"1",
"3",
"2",
"5",
"4",
"8",
"7",
"12",
"12",
"19",
"19",
"29",
"31",
"43",
"48",
"65",
"73",
"97",
"110",
"142",
"164",
"208",
"240",
"301",
"350",
"432",
"504",
"617",
"719",
"874",
"1019",
"1228",
"1434",
"1717",
"2001",
"2385",
"2778",
"3292",
"3831",
"4522",
"5252",
"6177",
"7164",
"8392",
"9722",
"11352",
"13125",
"15283",
"17643"
] | Number of integer partitions of n whose first differences have mean -1. |
A361393 | [
"2",
"3",
"5",
"6",
"7",
"10",
"11",
"12",
"13",
"14",
"15",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"26",
"28",
"29",
"30",
"31",
"33",
"34",
"35",
"37",
"38",
"39",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"50",
"51",
"52",
"53",
"55",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"73",
"74",
"75",
"76",
"77",
"78",
"79",
"82",
"83",
"84",
"85"
] | Positive integers k such that 2*omega(k) > bigomega(k). |
A361394 | [
"1",
"1",
"2",
"2",
"4",
"6",
"8",
"11",
"15",
"20",
"30",
"38",
"49",
"65",
"83",
"108",
"139",
"178",
"224",
"286",
"358",
"437",
"550",
"684",
"837",
"1037",
"1269",
"1553",
"1889",
"2295",
"2770",
"3359",
"4035",
"4843",
"5808",
"6951",
"8312",
"9902",
"11752",
"13958",
"16531",
"19541",
"23037",
"27162",
"31911",
"37488",
"43950",
"51463",
"60127",
"70229"
] | Number of integer partitions of n where 2*(number of distinct parts) >= (number of parts). |
A361395 | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"24",
"25",
"26",
"28",
"29",
"30",
"31",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"40",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"49",
"50",
"51",
"52",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"73",
"74"
] | Positive integers k such that 2*omega(k) >= bigomega(k). |
A361396 | [
"1",
"2",
"3",
"4",
"6",
"7517",
"15034",
"18059",
"22551",
"28019",
"30068",
"30983",
"36118",
"45102",
"56038",
"61966",
"65267",
"67427",
"67499",
"71387",
"84057",
"84947",
"90677",
"92949",
"97187",
"112076",
"115469",
"123932",
"127487",
"130534",
"130787",
"134854",
"134998",
"142774",
"168114",
"169067",
"169894",
"181354",
"185898",
"191579",
"194374",
"195801"
] | Integers k such that 28*phi(29*197^3*k) is not a totient number where phi is the totient function. |
A361397 | [
"1",
"1",
"0",
"1",
"2",
"0",
"1",
"4",
"2",
"0",
"1",
"6",
"20",
"4",
"0",
"1",
"8",
"54",
"176",
"10",
"0",
"1",
"10",
"104",
"996",
"1876",
"28",
"0",
"1",
"12",
"170",
"2944",
"22734",
"22064",
"84",
"0",
"1",
"14",
"252",
"6500",
"108136",
"577692",
"275568",
"264",
"0",
"1",
"16",
"350",
"12144",
"332050",
"4525888",
"15680628",
"3584064",
"858",
"0"
] | Number A(n,k) of k-dimensional cubic lattice walks with 2n steps from origin to origin and avoiding early returns to the origin; square array A(n,k), n>=0, k>=0, read by antidiagonals. |
A361398 | [
"1",
"2",
"5",
"3",
"9",
"12",
"9",
"4",
"14",
"28",
"30",
"21",
"19",
"21",
"14",
"5",
"20",
"53",
"68",
"60",
"55",
"74",
"68",
"32",
"34",
"60",
"55",
"36",
"34",
"32",
"20",
"6",
"27",
"89",
"126",
"134",
"120",
"181",
"196",
"108",
"88",
"181",
"183",
"136",
"151",
"164",
"126",
"45",
"55",
"134",
"151",
"129",
"107",
"136",
"120",
"54",
"69",
"108",
"88",
"54",
"55",
"45",
"27"
] | An infiltration of two words, say x and y, is a shuffle of x and y optionally followed by replacements of pairs of consecutive equal symbols, say two d's, one of which comes from x and the other from y, by a single d (that cannot be part of another replacement); a(n) is the number of distinct infiltrations of the word given by the binary representation of n with itself. |
A361399 | [
"0",
"1",
"2",
"1",
"2",
"5",
"2",
"3",
"4",
"5",
"2",
"5",
"2",
"5",
"6",
"3",
"4",
"9",
"10",
"5",
"4",
"5",
"10",
"11",
"4",
"5",
"6",
"5",
"6",
"13",
"6",
"7",
"8",
"9",
"18",
"9",
"4",
"9",
"10",
"11",
"4",
"9",
"10",
"5",
"10",
"5",
"22",
"11",
"4",
"9",
"10",
"5",
"10",
"5",
"6",
"11",
"12",
"13",
"6",
"13",
"6",
"13",
"14",
"7",
"8",
"17",
"18",
"9",
"18",
"9",
"18",
"19",
"8",
"9",
"10",
"19",
"10",
"21"
] | a(n) is the least k such that the binary expansion of n is a self-infiltration of that of k. |
A361401 | [
"0",
"1",
"3",
"2",
"4",
"6",
"10",
"12",
"3",
"7",
"15",
"4",
"8",
"12",
"16",
"20",
"24",
"36",
"40",
"48",
"5",
"9",
"11",
"13",
"19",
"21",
"25",
"27",
"43",
"45",
"51",
"53",
"6",
"12",
"14",
"26",
"28",
"30",
"54",
"58",
"60",
"7",
"15",
"31",
"63",
"8",
"16",
"24",
"32",
"40",
"48",
"64",
"72",
"80",
"96",
"136",
"144",
"160",
"192"
] | Irregular table T(n, k), n >= 0, k = 1..A361398(n); the n-th row lists the numbers whose binary expansion is a self-infiltration of that of n. |
A361402 | [
"5",
"23",
"599",
"7899999999999999999999999999999999999999999999999899999999999999999"
] | a(1) = 5; a(n+1) is the smallest prime p > a(n) such that digsum(p) = a(n). |
A361403 | [
"1",
"0",
"5",
"23",
"247",
"4660",
"124480",
"4286155",
"177173770",
"8460721770",
"456369771864",
"27394102475517",
"1809905002448020",
"130479709461582679",
"10191059146232826353",
"857183200472049855001",
"77244717697104310952411",
"7424434373914632379955822",
"758150225111024064264853603",
"81967014740890327829104517614",
"9353488650500180241693235592248"
] | Number of bicolored connected cubic graphs on 2n unlabeled vertices. |
A361404 | [
"1",
"1",
"1",
"2",
"2",
"2",
"4",
"6",
"6",
"4",
"11",
"20",
"28",
"20",
"11",
"34",
"90",
"148",
"148",
"90",
"34",
"156",
"544",
"1144",
"1408",
"1144",
"544",
"156",
"1044",
"5096",
"13128",
"20364",
"20364",
"13128",
"5096",
"1044",
"12346",
"79264",
"250240",
"472128",
"580656",
"472128",
"250240",
"79264",
"12346"
] | Triangle read by rows: T(n,k) is the number of graphs with loops on n unlabeled vertices with k loops. |
A361405 | [
"1",
"2",
"28",
"1408",
"580656",
"2658827456",
"146702084635392",
"98485306566812364032",
"820443196111261227164076544",
"86804253216450161933010414314819072",
"119212631345634236227720012129209606659383296",
"2166023316743980619769969171366251471253351621687457792"
] | Number of graphs with loops on 2n unlabeled vertices with n loops. |
A361406 | [
"1",
"0",
"1",
"5",
"63",
"1052",
"27336",
"882321",
"34455134",
"1558650424",
"80016369538",
"4589908631503",
"290839634055722",
"20171917072658395",
"1519875854413728667",
"123616508830454828043",
"10794216583730162449785",
"1007179737486515827821590",
"100007950522974604304016627",
"10529173417583858651114779790",
"1171605981584666223513790021758"
] | Number of bicolored connected cubic graphs on 2n unlabeled vertices with n vertices of each color. |
A361407 | [
"0",
"1",
"2",
"10",
"64",
"490",
"4595",
"51063",
"657623",
"9592204",
"155630924",
"2771922417",
"53673859357",
"1121581872170",
"25143397213226",
"601751140758134",
"15310778492310274",
"412656423154230159",
"11743600063060974656",
"351882591907696156959"
] | Number of connected cubic graphs on 2n unlabeled vertices rooted at a vertex. |
A361408 | [
"0",
"1",
"5",
"31",
"248",
"2382",
"27233",
"359800",
"5364193",
"88622485",
"1602171855",
"31410476113",
"663240471075",
"15001046054183",
"361775504849332",
"9266474332849318",
"251217335356943672",
"7186461542458525108",
"216332059500870350414",
"6835872042063656823802"
] | Number of connected cubic graphs on 2n unlabeled vertices rooted at a pair of indistinguishable vertices. |
A361409 | [
"1",
"0",
"1",
"5",
"66",
"1071",
"27606",
"887305",
"34583357",
"1562797351",
"80177945542",
"4597212665432",
"291214532031215",
"20193430937073303",
"1521240318892230748",
"123711268485285686123",
"10801367759750192440520",
"1007762402877770768660697",
"100058924666668698411972015",
"10533938778032068908299390227",
"1172080056205294525370971027435"
] | Number of bicolored cubic graphs on 2n unlabeled vertices with n vertices of each color. |
A361410 | [
"0",
"1",
"2",
"11",
"68",
"510",
"4712",
"51877",
"664520",
"9662968",
"156490473",
"2783955994",
"53863486240",
"1124886942314",
"25206326633070",
"603048386506505",
"15339533779133582",
"413338072569232815",
"11760801736217845686",
"352342902996056683824"
] | Number of cubic graphs on 2n unlabeled vertices rooted at a vertex. |
A361411 | [
"0",
"1",
"5",
"33",
"257",
"2443",
"27682",
"363759",
"5405697",
"89134360",
"1609418390",
"31525697245",
"665263778962",
"15039817276939",
"362579178545598",
"9284375250749758",
"251643492565059981",
"7197256536139662143",
"216621907269166632361",
"6844093745422473471562"
] | Number of cubic graphs on 2n unlabeled vertices rooted at a pair of indistinguishable vertices. |
A361412 | [
"1",
"3",
"12",
"67",
"441",
"3464",
"31616",
"331997",
"3961462",
"53105424",
"791237787",
"12978022526",
"232407307054",
"4511887729886",
"94385418177277",
"2116529900006321",
"50646269987874834",
"1288091152941695791",
"34697173459041347465",
"986800102740080746702",
"29548269236430810895013"
] | Number of connected 3-regular multigraphs on 2n unlabeled nodes rooted at an unoriented edge (or loop), loops allowed. |
A361413 | [
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"4128",
"1",
"10880",
"641",
"45904",
"349496",
"892088",
"40873",
"17695080"
] | Number of ways to tile an n X n square using rectangles with distinct dimensions where all the rectangle edge lengths are prime numbers. |
A361414 | [
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"7",
"0",
"2",
"0",
"2",
"1",
"1",
"0",
"6",
"0",
"1",
"2",
"1",
"0",
"1",
"0",
"33",
"0",
"1",
"0",
"4",
"0",
"1",
"1",
"5",
"0",
"2",
"0",
"1",
"0",
"1",
"0",
"23",
"0",
"2",
"0",
"2",
"0",
"6",
"1",
"5",
"1",
"1",
"0",
"3",
"0",
"1",
"1",
"200",
"0",
"1",
"0",
"2",
"0",
"1",
"0",
"19",
"0",
"1",
"1",
"1",
"0",
"2",
"0",
"24",
"8",
"1",
"0",
"3",
"0"
] | Number of indecomposable non-abelian groups of order n. |
A361418 | [
"1",
"4",
"12",
"16",
"60",
"36",
"48",
"256",
"360",
"4096",
"180",
"144",
"240",
"576",
"768",
"65536",
"2520",
"1048576",
"12288",
"900",
"1260",
"1296",
"720",
"2304",
"1680",
"9216",
"2880",
"5184",
"3840",
"147456",
"196608",
"36864",
"27720",
"46656",
"3145728",
"4398046511104",
"61440",
"3600",
"6300",
"18014398509481984",
"10080",
"20736"
] | a(n) is the least number with exactly n noninfinitary divisors. |
A361419 | [
"0",
"6",
"7",
"9",
"11",
"18",
"32",
"44",
"56",
"62",
"72",
"82",
"94",
"96",
"98",
"102",
"104",
"110",
"116",
"122",
"132",
"136",
"138",
"146",
"150",
"152",
"178",
"180",
"182",
"210",
"222",
"226",
"230",
"236",
"238",
"242",
"248",
"252",
"264",
"272",
"284",
"292",
"296",
"304",
"322",
"332",
"338",
"342",
"350",
"356",
"360",
"374",
"382",
"390",
"392",
"404"
] | Numbers k such that there is a unique number m for which the sum of the aliquot infinitary divisors of m (A126168) is k. |
A361420 | [
"1",
"6",
"8",
"15",
"21",
"52",
"58",
"82",
"106",
"118",
"268",
"158",
"356",
"1264",
"1296",
"388",
"202",
"214",
"226",
"130",
"508",
"524",
"1936",
"160",
"138",
"298",
"692",
"2608",
"358",
"3088",
"288",
"446",
"454",
"466",
"932",
"478",
"432",
"348",
"1792",
"538",
"562",
"578",
"586",
"12032",
"1268",
"748",
"20736",
"1348",
"694",
"706",
"26368",
"544",
"758"
] | a(n) is the unique number m such that A126168(m) = A361419(n). |
A361421 | [
"840",
"2040",
"4440",
"9240",
"25320",
"51000",
"117480",
"271320",
"765480",
"1531320",
"3721800",
"5956440",
"12295560",
"25086840",
"54141960",
"108284280",
"250301640",
"502213560",
"1007626440",
"2017856760",
"4039750920",
"8079502200",
"19596145800",
"44369345400",
"71495068200",
"115576350360",
"231152701080"
] | Infinitary aliquot sequence starting at 840: a(1) = 840, a(n) = A126168(a(n-1)), for n >= 2. |
A361422 | [
"0",
"1",
"3",
"2",
"4",
"17",
"5",
"8",
"10",
"18",
"6",
"19",
"7",
"20",
"29",
"9",
"11",
"47",
"71",
"21",
"12",
"22",
"72",
"96",
"13",
"23",
"30",
"24",
"31",
"121",
"32",
"36",
"38",
"48",
"197",
"49",
"14",
"50",
"73",
"97",
"15",
"51",
"74",
"25",
"75",
"26",
"367",
"98",
"16",
"52",
"76",
"27",
"77",
"28",
"33",
"99",
"112",
"122",
"34",
"123",
"35",
"124",
"135",
"37",
"39"
] | Inverse permutation to A361379. |
A361424 | [
"1",
"2",
"2",
"2",
"6",
"8",
"4",
"12",
"48",
"80",
"4",
"16",
"80",
"480",
"1152",
"8",
"48",
"480",
"2880",
"20160",
"53760",
"8",
"53",
"960",
"13440",
"107520"
] | Triangle read by rows: T(n,k) is the maximum of a certain measure of the difficulty level (see comments) for tiling an n X k rectangle with a set of integer-sided rectangular pieces, rounded down to the nearest integer. |
A361425 | [
"1",
"2",
"8",
"80",
"1152",
"53760"
] | Maximum difficulty level (see A361424 for the definition) for tiling an n X n square with a set of integer-sided rectangles, rounded down to the nearest integer. |
A361426 | [
"2",
"2",
"6",
"12",
"16",
"48",
"53",
"120",
"320",
"280",
"1120",
"2240",
"2986",
"8960",
"17920",
"26880",
"53760",
"107520",
"134400",
"268800",
"537600",
"591360",
"1182720",
"2365440",
"2956800",
"5677056",
"11354112"
] | Maximum difficulty level (see A361424 for the definition) for tiling an n X 2 rectangle with a set of integer-sided rectangles, rounded down to the nearest integer. |
A361427 | [
"2",
"6",
"8",
"48",
"80",
"480",
"960",
"1920",
"3360",
"13440",
"20160",
"60480",
"80640",
"201600",
"967680",
"1612800"
] | Maximum difficulty level (see A361424 for the definition) for tiling an n X 3 rectangle with a set of integer-sided rectangles, rounded down to the nearest integer. |
A361428 | [
"4",
"12",
"48",
"80",
"480",
"2880",
"13440",
"53760",
"107520",
"322560",
"725760"
] | Maximum difficulty level (see A361424 for the definition) for tiling an n X 4 rectangle with a set of integer-sided rectangles, rounded down to the nearest integer. |
A361430 | [
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"2",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"2",
"0",
"0",
"0",
"0",
"4",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"5",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"0",
"0",
"0"
] | Multiplicative with a(p^e) = e - 1. |
A361431 | [
"1",
"2",
"24",
"34802",
"509145568",
"142743029326162",
"715761543475698773496",
"63014651062141097287201438690",
"96683719664587866428237173383906926464",
"2573179910450886540215919614478751310457090316706",
"1184101051443285881265166362742300236491599013268534224381864"
] | Number of ways to write n^2 as an ordered sum of n^2 squares of integers. |
A361432 | [
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"2",
"2",
"0",
"1",
"3",
"6",
"4",
"0",
"1",
"4",
"12",
"20",
"8",
"0",
"1",
"5",
"20",
"54",
"68",
"16",
"0",
"1",
"6",
"30",
"112",
"252",
"232",
"32",
"0",
"1",
"7",
"42",
"200",
"656",
"1188",
"792",
"64",
"0",
"1",
"8",
"56",
"324",
"1400",
"3904",
"5616",
"2704",
"128",
"0",
"1",
"9",
"72",
"490",
"2628",
"10000",
"23360",
"26568",
"9232",
"256",
"0"
] | Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,2*j). |
A361433 | [
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"1"
] | a(n) = number of squares in the n-th antidiagonal of the natural number array, A000027. |
A361434 | [
"1",
"4",
"11",
"18",
"59",
"108",
"187",
"198",
"274",
"335",
"338",
"374",
"381",
"387",
"433",
"815",
"848",
"1495",
"1629",
"2002",
"3554",
"3565",
"4112",
"4318",
"4569",
"4592",
"4613",
"4618",
"4643",
"4727",
"4733",
"6103",
"6118",
"7074",
"7153",
"7319",
"7521",
"7562",
"7567",
"7684",
"7748",
"7757",
"7764",
"7989",
"8205",
"8561",
"8620"
] | Positions in Pi where the leader in the race of digits changes. |
A361435 | [
"1",
"3",
"11",
"34",
"144",
"165",
"229",
"517",
"790",
"6870",
"12757",
"21134",
"54155",
"226470",
"193225",
"431900",
"948949",
"3960994",
"6674779",
"7594013",
"14204939",
"32720909",
"20369309",
"176923605",
"335119938"
] | a(n) is the least positive integer that can be expressed as the sum of one or more consecutive squarefree numbers in exactly n ways. |
A361437 | [
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"12",
"15",
"58",
"59",
"102",
"111",
"118",
"164",
"291",
"589",
"685",
"1671",
"1900",
"1945",
"4905"
] | Numbers k such that k! - Sum_{i=1..k-1} (-1)^(k-i)*i! is prime. |
A361438 | [
"1",
"1",
"3",
"1",
"7",
"1",
"3",
"5",
"15",
"1",
"31",
"1",
"3",
"7",
"9",
"21",
"63",
"1",
"127",
"1",
"3",
"5",
"15",
"17",
"51",
"85",
"255",
"1",
"7",
"73",
"511",
"1",
"3",
"11",
"31",
"33",
"93",
"341",
"1023",
"1",
"23",
"89",
"2047",
"1",
"3",
"5",
"7",
"9",
"13",
"15",
"21",
"35",
"39",
"45",
"63",
"65",
"91",
"105",
"117",
"195",
"273",
"315",
"455",
"585",
"819",
"1365",
"4095",
"1",
"8191",
"1",
"3",
"43",
"127",
"129",
"381",
"5461",
"16383"
] | Triangle T(n,k), n >= 1, 1 <= k <= A046801(n), read by rows, where T(n,k) is k-th smallest divisor of 2^n-1. |
A361442 | [
"0",
"1",
"-1",
"2",
"-3",
"4",
"3",
"-5",
"8",
"-12",
"5",
"-8",
"13",
"-21",
"33",
"6",
"-11",
"19",
"-32",
"53",
"-86",
"-2",
"-4",
"15",
"-34",
"66",
"-119",
"205",
"9",
"-7",
"11",
"-26",
"60",
"-126",
"245",
"-450",
"10",
"-19",
"26",
"-37",
"63",
"-123",
"249",
"-494",
"944",
"7",
"-17",
"36",
"-62",
"99",
"-162",
"285",
"-534",
"1028",
"-1972"
] | Infinite triangle T(n, k), n, k >= 0, read and filled by rows the greedy way with distinct integers such that for any n, k >= 0, T(n, k) + T(n+1, k) + T(n+1, k+1) = 0; each term is minimal in absolute value and in case of a tie, preference is given to the positive value. |
A361443 | [
"0",
"1",
"2",
"3",
"5",
"6",
"-2",
"9",
"10",
"7",
"16",
"-10",
"24",
"14",
"17",
"22",
"-13",
"-29",
"-16",
"-18",
"-25",
"-24",
"-20",
"-27",
"-35",
"12",
"-30",
"-42",
"-22",
"-36",
"-40",
"-43",
"-44",
"-45",
"-46",
"21",
"35",
"28",
"32",
"38",
"27",
"37",
"41",
"30",
"50",
"46",
"55",
"51",
"56",
"39",
"74",
"54",
"73",
"67",
"57",
"78",
"71",
"59",
"61",
"80",
"68",
"79"
] | a(n) is the first term of the n-th row of A361442. |
A361444 | [
"1",
"2",
"3",
"4",
"7",
"6",
"5",
"8",
"9",
"22",
"141",
"88",
"111",
"202",
"55",
"222",
"11",
"212",
"99",
"232",
"121",
"252",
"101",
"66",
"131",
"242",
"191",
"272",
"77",
"282",
"151",
"292",
"171",
"262",
"181",
"606",
"313",
"414",
"343",
"444",
"353",
"44",
"303",
"424",
"33",
"434",
"323",
"404",
"383",
"474",
"535",
"484",
"373",
"454",
"333",
"464",
"363"
] | Lexicographically earliest sequence of distinct positive base-10 palindromes such that a(n) + a(n+1) is prime. |
A361445 | [
"3",
"5",
"7",
"11",
"13",
"11",
"13",
"17",
"31",
"163",
"229",
"199",
"313",
"257",
"277",
"233",
"223",
"311",
"331",
"353",
"373",
"353",
"167",
"197",
"373",
"433",
"463",
"349",
"359",
"433",
"443",
"463",
"433",
"443",
"787",
"919",
"727",
"757",
"787",
"797",
"397",
"347",
"727",
"457",
"467",
"757",
"727",
"787",
"857",
"1009",
"1019",
"857"
] | Sums of consecutive terms of A361444. |
A361446 | [
"1",
"3",
"16",
"99",
"717",
"5964",
"56701",
"611750",
"7432491",
"100838222",
"1514749135",
"24989362186",
"449429188211",
"8754181791029",
"183621843677724",
"4126714250580949",
"98932328702693666",
"2520187379996442269",
"67980528958530199837",
"1935753445850303203221",
"58025998739501873764826"
] | Number of connected 3-regular multigraphs on 2n unlabeled nodes rooted at an oriented edge (or loop), loops allowed. |
A361447 | [
"1",
"2",
"9",
"49",
"338",
"2744",
"26025",
"282419",
"3463502",
"47439030",
"718618117",
"11937743088",
"215896959624",
"4224096594516",
"88919920910684",
"2004237153640098",
"48165411560792500",
"1229462431057436457",
"33221743136066636436",
"947415638925100675208",
"28436953641282225835143"
] | Number of connected 3-regular (cubic) multigraphs on 2n unlabeled nodes rooted at an unoriented edge (or loop) whose removal does not disconnect the graph, loops allowed. |
A361448 | [
"1",
"2",
"10",
"66",
"511",
"4536",
"45519",
"512661",
"6436571",
"89505875",
"1369509795",
"22908806774",
"416408493351",
"8178599551905",
"172690849144538",
"3902128758180500",
"93970611848528998",
"2402929936231885063",
"65029668312580777779",
"1856984518220396165657",
"55803367549204703645086"
] | Number of connected 3-regular multigraphs on 2n unlabeled nodes rooted at an oriented edge (or loop) whose removal does not disconnect the graph, loops allowed. |
A361449 | [
"1",
"4",
"1573",
"235862938",
"37155328943771767",
"12458003910177278332403197817",
"15868284521418341362691384074620547198698934",
"126024243590219798408446284849897811759970155660106999854057796",
"9633603531065043175094488158875624821526224424118142906010095879389674957042528276201"
] | Number of colorings of an n X n grid up to permutation of the colors with no element having the same color as any horizontal, diagonal or antidiagonal neighbor. |
A361450 | [
"1",
"5",
"2906",
"656404264",
"148049849095504726",
"67939294184937980415465539016",
"114130286115375064054502412158789812265958284",
"1159829070306179232444894822978404171908276758235252386883985596",
"110658909677185498376669680234621983460781735371211477687464832774947897935655888426146"
] | Number of colorings of an n X n grid up to permutation of the colors with no element having the same color as any horizontal or antidiagonal neighbor. |
A361451 | [
"1",
"2",
"716",
"112073062",
"18633407199331522",
"6575857942770612176290018153",
"8769438200005128572266011359369913757287151",
"72530091349507692706447958441062812294511923156598114466468667",
"5746371835090565784276352813398004749296101606959968049467898643632416711373273639694"
] | Number of colorings of an n X n grid up to permutation of the colors with no element having the same color as any horizontal, vertical or antidiagonal neighbor. |
A361452 | [
"1",
"7",
"4192",
"953124784",
"213291369981652792",
"96638817185266245591837984336",
"160065721141038888919235753368205172658011648",
"1603869086916486859475402575499346988054543498175515730927380336",
"150972529586126094166343144224892296826763766718771806614594599643773846828229334720096"
] | Number of colorings of an n X n grid up to permutation of the colors with no element having the same color as any diagonal or antidiagonal neighbor. |
A361453 | [
"1",
"15",
"4141",
"450288795",
"50602429743064097",
"12123635532529660182357354372"
] | Number of colorings of the n X n knight graph up to permutation of the colors. |
A361454 | [
"1",
"4",
"17",
"78",
"360",
"1835",
"10168",
"62271",
"419701",
"3107800",
"25108419",
"219982357",
"2076785950",
"21011123423",
"226708386212",
"2598075587529",
"31509529248585",
"403155101535686",
"5426659537490872",
"76655160760249052",
"1133766220709242638",
"17522418780011531368",
"282452568669871514771",
"4740645804610572971112"
] | Number of 4-regular multigraphs on n unlabeled nodes with 4 external legs, loops allowed. |
A361455 | [
"1",
"0",
"1",
"0",
"1",
"3",
"0",
"18",
"21",
"25",
"0",
"1606",
"1173",
"774",
"543",
"0",
"565080",
"271790",
"122595",
"59830",
"29281",
"0",
"734774776",
"229224750",
"70500705",
"25349355",
"10110735",
"3781503",
"0",
"3523091615568",
"685793359804",
"138122171880",
"35130437825",
"11002159455",
"3767987307",
"1138779265"
] | Triangle read by rows: T(n,k) is the number of simple digraphs on labeled n nodes with k strongly connected components. |
A361456 | [
"1",
"1",
"3",
"2",
"13",
"30",
"24",
"6",
"75",
"372",
"780",
"872",
"546",
"180",
"24",
"541",
"4660",
"18180",
"42140",
"64150",
"66900",
"48320",
"23820",
"7650",
"1440",
"120",
"4683",
"62130",
"385980",
"1487520",
"3973770",
"7789032",
"11565360",
"13238520",
"11771130",
"8124710",
"4314420",
"1729440",
"506010",
"101880",
"12600",
"720"
] | Irregular triangle read by rows. T(n,k) is the number of properly colored simple labeled graphs on [n] with exactly k edges, n >= 0, 0 <= k <= binomial(n,2). |
A361457 | [
"3",
"4",
"6",
"7",
"8",
"10",
"11",
"12",
"14",
"15",
"16",
"17",
"19",
"20",
"21",
"23",
"24",
"26",
"27",
"28",
"29",
"30",
"33",
"34",
"35",
"36",
"37",
"38",
"40"
] | Numbers k such that the first player has a winning strategy in the game described in the Comments. |
A361460 | [
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"1",
"0",
"0",
"0",
"1",
"1",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"1",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"1",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"1",
"1"
] | a(n) = 1 if A135504(n+1) = 2 * A135504(n), otherwise 0. |
A361461 | [
"2",
"5",
"7",
"8",
"11",
"13",
"15",
"17",
"19",
"20",
"23",
"26",
"27",
"29",
"31",
"34",
"35",
"37",
"39",
"41",
"43",
"44",
"47",
"48",
"49",
"53",
"54",
"55",
"56",
"59",
"61",
"62",
"63",
"65",
"67",
"69",
"71",
"73",
"74",
"75",
"76",
"79",
"80",
"83",
"84",
"87",
"89",
"92",
"94",
"95",
"97",
"98",
"99",
"101",
"103",
"104",
"107",
"109",
"110",
"111",
"113",
"116",
"118",
"119",
"120",
"123",
"124",
"125",
"127",
"129",
"131",
"132"
] | Numbers k such that x(k+1) = 2 * x(k), when x(1)=1 and x(n) = x(n-1) + lcm(x(n-1),n), i.e., x(n) = A135504(n). |
A361462 | [
"2",
"1",
"2",
"1",
"1",
"3",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"3",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"3",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"3",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"1",
"1",
"3",
"1",
"1",
"1"
] | a(n) = A135506(n) mod 4. |
A361463 | [
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0"
] | a(n) = 1 if A135506(n) == 3 (mod 4), otherwise 0. |
A361464 | [
"6",
"10",
"18",
"21",
"22",
"30",
"32",
"42",
"45",
"46",
"58",
"66",
"68",
"70",
"78",
"82",
"85",
"91",
"93",
"102",
"106",
"114",
"117",
"126",
"128",
"130",
"133",
"138",
"140",
"141",
"150",
"162",
"165",
"166",
"171",
"176",
"178",
"187",
"190",
"198",
"200",
"205",
"210",
"212",
"213",
"214",
"222",
"226",
"234",
"235",
"238",
"248",
"250",
"253",
"261",
"262",
"267",
"270",
"282",
"294",
"301",
"306",
"308",
"310",
"320"
] | Numbers k such that A135504(k+1) / A135504(k) is a multiple of 4. |
A361465 | [
"1",
"0",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1"
] | a(n) = 1 if A017665(n) [the numerator of the sum of the reciprocals of the divisors of n] is a power of 2, otherwise 0. |
A361466 | [
"1",
"1",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"1",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"1"
] | a(n) = 1 if A017665(A003961(n)) is a power of 2, otherwise 0. Here A017665 is the numerator of the sum of the reciprocals of the divisors of n, and A003961 is fully multiplicative with a(p) = nextprime(p). |
A361467 | [
"1",
"12",
"30",
"117",
"56",
"360",
"132",
"1080",
"775",
"672",
"182",
"3510",
"306",
"1584",
"1680",
"9801",
"380",
"9300",
"552",
"6552",
"3960",
"2184",
"870",
"32400",
"2793",
"3672",
"19500",
"15444",
"992",
"20160",
"1406",
"88452",
"5460",
"4560",
"7392",
"90675",
"1722",
"6624",
"9180",
"60480",
"1892",
"47520",
"2256",
"21294",
"43400",
"10440",
"2862",
"294030",
"16093",
"33516",
"11400"
] | a(n) = A003961(n) * sigma(A003961(n)), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function. |