metadata
pretty_name: Cartoon Set
size_categories:
- 10K<n<100K
task_categories:
- image-classification
license: cc-by-4.0
Dataset Card for Cartoon Set
Table of Contents
- Dataset Card for Cartoon Set
Dataset Description
- Homepage: https://google.github.io/cartoonset/
- Repository:
- Paper: XGAN: Unsupervised Image-to-Image Translation for Many-to-Many Mappings
- Leaderboard:
- Point of Contact:
Dataset Summary
Cartoon Set is a collection of random, 2D cartoon avatar images. The cartoons vary in 10 artwork categories, 4 color categories, and 4 proportion categories, with a total of ~1013 possible combinations. We provide sets of 10k and 100k randomly chosen cartoons and labeled attributes.
Supported Tasks and Leaderboards
image-classification
: The goal of this task is to classify a given image into one of 10 classes. The leaderboard is available [here](https://paperswithcode.com/sota/image-classification-on-Cartoon Set).
Languages
English
Dataset Structure
Data Instances
A sample from the training set is provided below:
{
'img': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=32x32 at 0x201FA6EE748>,
'label': 0
}
Data Fields
- img: A
PIL.Image.Image
object containing the 32x32 image. Note that when accessing the image column:dataset[0]["image"]
the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the"image"
column, i.e.dataset[0]["image"]
should always be preferred overdataset["image"][0]
- label: 0-9 with the following correspondence 0 airplane 1 automobile 2 bird 3 cat 4 deer 5 dog 6 frog 7 horse 8 ship 9 truck
Data Splits
Train and Test
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
[More Information Needed]
Citation Information
@TECHREPORT{Krizhevsky09learningmultiple,
author = {Alex Krizhevsky},
title = {Learning multiple layers of features from tiny images},
institution = {},
year = {2009}
}
Contributions
Thanks to @czabo for adding this dataset.