Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Hindi
Size:
100K<n<1M
ArXiv:
License:
import os | |
import datasets | |
from typing import List | |
import json | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """ | |
""" | |
_DESCRIPTION = """ | |
This is the dataset repository for HiNER Dataset accepted to be published at LREC 2022. | |
The dataset can help build sequence labelling models for the task Named Entity Recognitin for the Hindi language. | |
""" | |
class HiNERConfig(datasets.BuilderConfig): | |
"""BuilderConfig for HiNER Dataset.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for HiNER. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(HiNERConfig, self).__init__(**kwargs) | |
class HiNERConfig(datasets.GeneratorBasedBuilder): | |
"""HiNER dataset.""" | |
BUILDER_CONFIGS = [ | |
HiNERConfig(name="HiNER", version=datasets.Version("0.0.2"), description="Hindi Named Entity Recognition dataset"), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"O", | |
"B-PERSON", | |
"I-PERSON", | |
"B-LOCATION", | |
"I-LOCATION", | |
"B-ORGANIZATION", | |
"I-ORGANIZATION", | |
"B-FESTIVAL", | |
"I-FESTIVAL", | |
"B-GAME", | |
"I-GAME", | |
"B-LANGUAGE", | |
"I-LANGUAGE", | |
"B-LITERATURE", | |
"I-LITERATURE", | |
"B-MISC", | |
"I-MISC", | |
"B-NUMEX", | |
"I-NUMEX", | |
"B-RELIGION", | |
"I-RELIGION", | |
"B-TIMEX", | |
"I-TIMEX", | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://github.com/cfiltnlp/HiNER", | |
citation=_CITATION, | |
) | |
_URL = "https://huggingface.co/datasets/cfilt/HiNER-original/resolve/main/data/" | |
_URLS = { | |
"train": _URL + "train.json", | |
"dev": _URL + "validation.json", | |
"test": _URL + "test.json" | |
} | |
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | |
urls_to_download = self._URLS | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}) | |
] | |
def _generate_examples(self, filepath): | |
"""This function returns the examples in the raw (text) form.""" | |
logger.info("generating examples from = %s", filepath) | |
with open(filepath) as f: | |
hiner = json.load(f) | |
for object in hiner: | |
id_ = int(object['id']) | |
yield id_, { | |
"id": str(id_), | |
"tokens": object['tokens'], | |
# "pos_tags": object['pos_tags'], | |
"ner_tags": object['ner_tags'], | |
} |